Experimental Evidence for Alkali Metal Cation−π Interactions

The interaction of alkali metal ions with arenes such as benzene or substituted benzenes has been documented in a variety of ways. This paper reviews the experimental evidence that has been accumulated to document the cation-π interaction that occurs between arenes and, particularly the ions sodium and potassium.

[1]  Weiliang Zhu,et al.  Density functional theory (DFT) study on the interaction of ammonium (NH4+) and aromatic nitrogen heterocyclics , 2000 .

[2]  Christophe Chipot,et al.  Cation−π Interactions in Proteins: Can Simple Models Provide an Accurate Description? , 1999 .

[3]  D. A. Dougherty,et al.  Cation-π interactions in structural biology , 1999 .

[4]  S. Hashimoto,et al.  A theoretical study on the conformations, energetics, and solvation effects on the cation–π interaction between monovalent ions Li+, Na+, and K+ and naphthalene molecules , 1999 .

[5]  W. S. Caldwell,et al.  Molecular recognition in nicotinic acetylcholine receptors: the importance of pi-cation interactions. , 1999, Journal of medicinal chemistry.

[6]  P. Kollman,et al.  Binding of Organic Cations to a Cyclophane Host As Studied with Molecular Dynamics Simulations and Free Energy Calculations , 1999 .

[7]  Corey J. Weinheimer,et al.  Size selectivity by cation–π interactions: Solvation of K+ and Na+ by benzene and water , 1999 .

[8]  David A. Dixon,et al.  Ab Initio Molecular Orbital Study of Cation-pi Binding Between the Alkali-Metal Cations and Benzene , 1999 .

[9]  F. J. Luque,et al.  A Topological Analysis of Electron Density in Cation−π Complexes , 1999 .

[10]  L. Williams,et al.  Divalent cations stabilize unstacked conformations of DNA and RNA by interacting with base pi systems. , 1998, Biochemistry.

[11]  Riccardo Torriti,et al.  Binding of Acetylcholine and Quaternary Ammonium Cations to Macrocyclic and Acyclic “Phane” Esters. Evaluation of the Cation−π Primary Interaction through Adaptive Aromatic Hosts , 1998 .

[12]  J. Wouters,et al.  Cation‐π (Na+‐Trp) interactions in the crystal structure of tetragonal lysozyme , 1998, Protein science : a publication of the Protein Society.

[13]  K. Murayama,et al.  Cation-π interactions between potassium ions and aromatic rings. Crystal structures of three potassium complexes of calix[6]arene , 1998 .

[14]  R. Dunbar Binding of Na+, Mg+, and Al+ to the π Faces of Naphthalene and Indole: Ab Initio Mapping Study , 1998 .

[15]  D. A. Dougherty,et al.  From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[16]  K. S. Kim,et al.  Ionophores and receptors using cation-pi interactions: collarenes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  G. Labesse,et al.  Crystallographic and Spectroscopic Studies of Native, Aminoquinol, and Monovalent Cation-bound Forms of Methylamine Dehydrogenase from Methylobacterium extorquens AM1* , 1998, The Journal of Biological Chemistry.

[18]  O. Donini,et al.  Development of modified force field for cation–amino acid interactions: Ab initio‐derived empirical correction terms with comments on cation–π interactions , 1998 .

[19]  H. Masuhara,et al.  Fluorescence Spectroscopic Studies of Anthracene Adsorbed into Zeolites: From the Detection of Cation−π Interaction to the Observation of Dimers and Crystals , 1998 .

[20]  Corey J. Weinheimer,et al.  Competitive solvation of K+ by benzene and water: Cation-π interactions and π-hydrogen bonds , 1998 .

[21]  F. J. Luque,et al.  Is polarization important in cation-pi interactions? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[23]  K. Ruhlandt-Senge,et al.  Lewis base coordination versus cation-π interaction in monomeric and hexameric potassium thiolates , 1997 .

[24]  G. Berthier,et al.  Theoretical study of binding of tetramethylammonium ion with aromatics , 1997 .

[25]  S. Shinkai,et al.  Synthesis and 1H NMR studies of vinyl-substituted calix[4]arene derivatives: Enhanced cation-π interactions with extended calix[4]arene π-systems , 1997 .

[26]  K. Klinkhammer Tris(trimethylsilyl)silanides of the Heavier Alkali Metals—A Structural Study† , 1997 .

[27]  H. Nöth,et al.  Donorfreie und donorhaltige supersilylalkalimetalle tBu3SiM1: Synthesen, charakterisierung, strukturen , 1997 .

[28]  D. A. Dougherty,et al.  The Cationminus signpi Interaction. , 1997, Chemical reviews.

[29]  P. Schleyer,et al.  Reduction of Dicarbapentaboranes(5) to 1,2-Diborata-4-boracyclopentadienes: Antiaromatic Compounds with 4π-Electron Systems†‡ , 1997 .

[30]  N S Scrutton,et al.  Cation-pi bonding and amino-aromatic interactions in the biomolecular recognition of substituted ammonium ligands. , 1996, The Biochemical journal.

[31]  D A Dougherty,et al.  Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Shinkai,et al.  Fullerene (C60)Ag+ interactions which induce a solution color change , 1996 .

[33]  G. Gokel,et al.  Synthetic Organic Chemical Models for Transmembrane Channels , 1996 .

[34]  Han van de Waterbeemd,et al.  Lipophilicity in Drug Action and Toxicology: Pliška/Lipophilicity , 1996 .

[35]  S. Shinkai,et al.  Reinvestigation of Calixarene-Based Artificial-Signaling Acetylcholine Receptors Useful in Neutral Aqueous (Water/Methanol) Solution , 1996 .

[36]  A. D. Cort,et al.  CYCLOPHANES AS NEUTRAL RECEPTORS FOR QUATERNARY AMMONIUM AND IMINIUM CATIONS IN CHLOROFORM SOLUTION , 1995 .

[37]  R. M. Izatt,et al.  Thermodynamic and Kinetic Data for Macrocycle Interaction with Cations, Anions, and Neutral Molecules , 1995 .

[38]  S. Liaw,et al.  Discovery of the ammonium substrate site on glutamine synthetase, A third cation binding site , 1995, Protein science : a publication of the Protein Society.

[39]  M. Dunn,et al.  The roles of Na+ and K+ in pyridoxal phosphate enzyme catalysis , 1995 .

[40]  J. Lehn,et al.  Binding of acetylcholine and other quaternary ammonium cations by sulfonated calixarenes. Crystal structure of a [choline-tetrasulfonated calix[4]arene] complex , 1995 .

[41]  Peter A. Kollman,et al.  Cation-.pi. Interactions: Nonadditive Effects Are Critical in Their Accurate Representation , 1995 .

[42]  J. Sussman,et al.  Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Shinkai,et al.  Facile Detection of Cation-π Interactions in Calix[n]arenes by Mass Spectrometry , 1994 .

[44]  R. MacKinnon,et al.  Mutations in the K+ channel signature sequence. , 1994, Biophysical journal.

[45]  R. M. Izatt,et al.  THERMODYNAMIC DATA FOR LIGAND INTERACTION WITH PROTONS AND METAL IONS IN AQUEOUS SOLUTIONS AT HIGH TEMPERATURES , 1994 .

[46]  L. Garel,et al.  Remarkable effect of the receptor size in the binding of acetylcholine and related ammonium ions to water-soluble cryptophanes , 1993 .

[47]  J. Forman,et al.  Molecular recognition in aqueous media. New binding studies provide further insights into the cation-π interaction and related phenomena , 1993 .

[48]  D A Dougherty,et al.  A mechanism for ion selectivity in potassium channels: computational studies of cation-pi interactions. , 1993, Science.

[49]  A. Schwabacher,et al.  Directionality of the cation-.pi. effect: a charge-mediated size selectivity in binding , 1993 .

[50]  S. Shinkai,et al.  Cation-π Interactions in Calix [4]arene-based Host Molecules. What Kind of Cavity-shape Is Favored for the Cation-binding? , 1993 .

[51]  R. M. Izatt,et al.  Thermodynamic and kinetic data for macrocycle interaction with neutral molecules , 1992 .

[52]  Ronald L. Bruening,et al.  Thermodynamic and kinetic data for macrocycle interactions with cations and anions , 1991 .

[53]  A. Goldman,et al.  Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein , 1991, Science.

[54]  Professor Dr. George A. Jeffrey,et al.  Hydrogen Bonding in Biological Structures , 1991, Springer Berlin Heidelberg.

[55]  D A Dougherty,et al.  Acetylcholine binding by a synthetic receptor: implications for biological recognition , 1990, Science.

[56]  B. Guo,et al.  The clustering reactions of benzene with sodium and lead ions , 1990 .

[57]  J M Thornton,et al.  SIRIUS. An automated method for the analysis of the preferred packing arrangements between protein groups. , 1990, Journal of molecular biology.

[58]  G. Pettersson,et al.  Effects of metabolite binding to ribulosebisphosphate carboxylase on the activity of the Calvin photosynthesis cycle. , 1988, European journal of biochemistry.

[59]  T. Shepodd,et al.  "Hydrophobic" binding of water-soluble guests by high-symmetry, chiral hosts. An electron-rich receptor site with a general affinity for quaternary ammonium compounds and electron-deficient .pi. systems , 1988 .

[60]  G. Gokel,et al.  Determination of thermodynamic parameters in lariat ether complexes using ion-selective electrodes , 1987 .

[61]  V. J. Gatto,et al.  Syntheses and binding properties of bibrachial lariat ethers (BiBLEs): survey of synthetic methods and cation selectivities , 1986 .

[62]  G. Gokel,et al.  Experimental model for the determination of cation binding constants in methanol using ion-selective electrode methods , 1986 .

[63]  G A Petsko,et al.  Amino‐aromatic interactions in proteins , 1986, FEBS letters.

[64]  U. Schneider,et al.  Ein makrocyclisches Polyphenolat als Rezeptoranalogon für Cholin und verwandte Ammoniumverbindungen , 1986 .

[65]  V. J. Gatto,et al.  Solid-state structural chemistry of lariat ether and BiBLE cation complexes: metal-ion identity and coordination number determine cavity size , 1986 .

[66]  J. D. Lamb,et al.  Thermodynamic and kinetic data for cation-macrocycle interaction , 1985 .

[67]  C. Deakyne,et al.  Unconventional ionic hydrogen bonds. 1. CH.delta.+.cntdot..cntdot..cntdot.X. Complexes of quaternary ions with n- and .pi.-donors , 1985 .

[68]  J. Atwood The interaction of alkali metal cations with aromatic molecules in complexes of the type M[AlMe3X]·aromatic, M[Al2Me6X]·aromatic, and related , 1985 .

[69]  Y. Satow,et al.  Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. , 1985, Journal of molecular biology.

[70]  V. J. Gatto,et al.  Syntheses of calcium-selective, substituted diaza-crown ethers: a novel, one-step formation of bibracchial lariat ethers (BiBLES) , 1984 .

[71]  V. J. Gatto,et al.  Ester side-arm participation in a crystalline lariat ether-sodium bromide complex , 1984, Journal of the American Chemical Society.

[72]  V. J. Gatto,et al.  Unequivocal evidence for sidearm participation in crystalline lariat ether complexes , 1983 .

[73]  G. Gokel,et al.  Lariat ethers. Synthesis and cation binding of macrocyclic polyethers possessing axially disposed secondary donor groups , 1981 .

[74]  J. Atwood,et al.  The synthesis of M[Al2(CH3)6NO3] (M+ = K+, Rb+, Cs+, NR4+), and the crystal structures of K[Al2(CH3)6NO3] and K[Al(CH3)3NO3] · C6H6 , 1978 .

[75]  F. A. Vazquez,et al.  Ultrasonic absorption kinetic studies of the complexation of aqueous lithium(1+), sodium(1+), rubidium(1+), thallium(1+), silver(1+), ammonium(1+), and calcium(2+) ions by 18-crown-6 , 1977 .

[76]  W. L. Jorgensen,et al.  The cyclic structure of monomeric dilithioacetylene , 1976 .

[77]  J. W. Edmonds,et al.  The crystal and molecular structure of the triclinic and monoclinic forms of valinomycin, C54H90N6O18. , 1975, Journal of the American Chemical Society.

[78]  I. Karle Conformation of valinomycin in a triclinic crystal form. , 1975, Journal of the American Chemical Society.

[79]  P. Q. Du,et al.  The influence of size, charge and concentration of exchange cations on the adsorption of ethane and ethylene by zeolites , 1972 .

[80]  L. Paquette,et al.  Silver(I) ion catalyzed rearrangements of strained .sigma. bonds. IV. Fate of tricyclo[4.1.0.02,7]heptane , 1970 .

[81]  P. Eaton,et al.  Catalysis of symmetry-restricted reactions by transition metal compounds. Valence isomerization of cubane , 1970 .

[82]  P. Kebarle,et al.  Hydration of the potassium ion in the gas phase: Enthalpies and entropies of hydration reactions: K^+(H_2O)_n-1,n=K^+(H_2O)_n , 1969 .

[83]  C. Angell INFRARED SPECTROSCOPIC INVESTIGATIONS OF ZEOLITES AND ADSORBED MOLECULES. III. SPECTRA OF THE ZEOLITE STRUCTURE. , 1968 .

[84]  J. Sunner,et al.  Ion-solvent molecule interactions in the gas phase , 1968 .

[85]  I. Paul,et al.  Crystal and molecular structure of a silver-bullvalene complex , 1967 .

[86]  Charles J. Pedersen,et al.  Cyclic polyethers and their complexes with metal salts , 1967 .

[87]  Weiliang Zhu,et al.  Possible interaction mechanism for quaternary ammonium (QA) ions binding to potassium channels: density functional theory and MP2 studies on the interaction between phenol and ammonium cation† , 1999 .

[88]  B. T. King,et al.  Cation-π Interactions in the Solid State: Crystal Structures of M + (benzene) 2 CB 11 Me 12 - (M = Tl, Cs, Rb, K, Na) and Li + (toluene)CB 11 Me 12 - , 1999 .

[89]  P. Gélin,et al.  Location of p-Xylene and Cesium Cations in ZSM-5 and Cs-ZSM-5: Structural Evidence for the Formation of a π-Complex , 1998 .

[90]  Philip A. Gale,et al.  Structures of potassium encapsulated within the 1,3-alternate conformation of calix[4]arenes , 1994 .

[91]  J. Lehn,et al.  Efficient complexation of quaternary ammonium compounds by a new water-soluble macrobicyclic receptor molecule , 1993 .

[92]  G. Gokel,et al.  N,N'-Bis(subst1tuted)-4,13-diaza-18-crown-6 derivatives having pi-donor-group-sidearms: correlation of thermodynamics and solid state structures , 1988 .

[93]  J. Canceill,et al.  Water-soluble cryptophane binding lipophilic guests in aqueous solution , 1987 .

[94]  V. J. Gatto,et al.  Novel synthetic access to 15- and 18-membered ring diaza-bibracchial lariat ethers (BiBLEs) and a study of sidearm-macroring cooperativity in cation binding , 1986 .

[95]  C. Deakyne,et al.  Unconventional ionic hydrogen bonds. 2. NH+.cntdot..cntdot..cntdot..pi.. Complexes of onium ions with olefins and benzene derivatives , 1985 .

[96]  J. Lehn,et al.  Binding of acetylcholine and other molecular cations by a macrocyclic receptor molecule of speleand type , 1984 .

[97]  G. Gokel,et al.  Macrocyclic polyether syntheses , 1982 .

[98]  J. Atwood,et al.  New bonding mode for a bridging dioxygen ligand: Crystal and molecular structure of [K.dibenzo-18-crown-6] [Al2(CH3)6O2].1.5C6H6 , 1981 .

[99]  E. Garbowski,et al.  Spectroscopic studies of benzene hydrogenation on platinum-loaded zeolites. Part 1.—Benzene adsorption on supports , 1980 .

[100]  M. Dobler,et al.  The crystal structure of a K+ complex of valinomycin. , 1975, Helvetica chimica acta.

[101]  M. Truter Structures of organic complexes with alkali metal ions , 1973 .

[102]  J. Lehn,et al.  Cation and cavity selectivities of alkali and alkaline-earth “cryptates” , 1971 .

[103]  P. Q. Du,et al.  Adsorption of ethane and ethylene on X-zeolites containing Li+, Na+, K+, Rb+ and Cs+ cations , 1971 .

[104]  Bernard Dietrich,et al.  Diaza-polyoxa-macrocycles et macrobicycles , 1969 .

[105]  C. Kennard,et al.  Crystal structure of racemic geijerene–silver nitrate adduct , 1968 .

[106]  J. D. Dunitz,et al.  Die Strukturen der mittleren Ringverbindungen. XIV. Struktur des Silbernitrat-trans-Cyclodecen-Addukts , 1967 .

[107]  H. P. Fritz Die spektren von bisbenzolmetall-komplexen im fernen infrarotThe spectra of bisbenzenemetal complexes in the far infrared , 1967 .