Situation-Dependent Behavior in Building Automation

The general aim of automation is to improve different areas of life. Within the area of automation in buildings a vast amount of systems coexist which are used in various fields of applications. Unfortunately, most of these applications are self-contained and therefore obstruct the establishment of system-spanning functions. Moreover, today's building automation consists of purely reactive systems, solely reacting to previously defined inputs. Unforeseen situations may result in malfunctions and unintended actions. This work describes a model which is able to meet our increasing demand for a reliable system that is capable of dealing with complex situations in modern life. It provides a basis for "consciously" recognizing situations and "far-sighted" actions. Biological systems and principles have ever since proven to be reliable and qualified sources for technical development. This work therefore concentrates on establishing a model architecture that embodies nature-like elements and biological concepts.

[1]  Mujtaba Khambatti Named Pipes , Sockets and other IPC , 2001 .

[2]  V Eronique Royer,et al.  Hierarchical Correspondance between Physical Situations and Action Models , 2022 .

[3]  Ecublens oreano Ago Ergo Sum , 1997 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Emil Jovanov,et al.  A MODEL OF CONSCIOUSNESS : AN ENGINEERING APPROACH , 1999 .

[6]  Hiroki Takeuchi,et al.  Development of "MEL HORSE" , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[7]  James S. Albus,et al.  The Engineering of Mind , 1996, Inf. Sci..

[8]  Kevin E. Kline,et al.  Transact-SQL programming , 1999 .

[9]  Terrence J. Sejnowski,et al.  Parallel Fiber Coding in the Cerebellum for Life-Long Learning , 2001, Auton. Robots.

[10]  John E. Laird,et al.  Learning Hierarchical Performance Knowledge by Observation , 1999, ICML.

[11]  James W. Davis,et al.  The Representation and Recognition of Action Using Temporal Templates , 1997, CVPR 1997.

[12]  Kai Ming Ting The Characterisation of Predictive Accuracy and Decision Combination , 1996, ICML.

[13]  Dietmar Dietrich,et al.  Open Control Networks , 2001 .

[14]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[15]  Markus Vincze,et al.  Modellierung des technischen Wahrnehmungsbewusstseins für den Bereich Home Automation , 2001 .

[16]  Shin'ichi Yuta Biologically Inspired Approach to Autonomous Systems , 1998 .

[17]  G. Schickhuber,et al.  Distributed fieldbus and control network systems , 1997 .

[18]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.

[19]  Eiichi Yoshida,et al.  Motion skills in multiple mobile robot system , 1996, Robotics Auton. Syst..

[20]  L. Squire Declarative and Nondeclarative Memory: Multiple Brain Systems Supporting Learning and Memory , 1992, Journal of Cognitive Neuroscience.

[21]  Volker Graefe,et al.  Machine Vision for Intelligent Robots , 1998, MVA.

[22]  Alex Meystel,et al.  Multi-Resolution Data Processing: It is Necessary, it is Possible, it is Fundamental , 1997 .

[23]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[24]  Dietmar Loy,et al.  Open control networks: LonWorks/EIA 709 technology , 2001 .

[25]  Janet L. Kolodner,et al.  Retrieval and organizational strategies in conceptual memory: a computer model , 1980 .

[26]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[27]  Ray Bareiss,et al.  Protos: An Exemplar-Based Learning Apprentice , 1988, Int. J. Man Mach. Stud..

[28]  Peter Clark,et al.  Rule Induction with CN2: Some Recent Improvements , 1991, EWSL.

[29]  Karen Zita Haigh,et al.  Learning situation-dependent costs: improving planning from probabilistic robot execution , 1998, AGENTS '98.

[30]  Jaime G. Carbonell,et al.  Learning by Observation and Practice: Towards Real Applications of Planning Systems* , 1994 .

[31]  Armin Walter,et al.  Dezentrale Automatisierung mit IEC 1131 und CANopen , 1997 .

[32]  Stephen S. Yau,et al.  Development of situation-aware application software for ubiquitous computing environments , 2002, Proceedings 26th Annual International Computer Software and Applications.

[33]  Hideaki Takeda,et al.  Cooperation of cognitive learning and behavior learning , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[34]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[35]  David W. Aha,et al.  Learning Representative Exemplars of Concepts: An Initial Case Study , 1987 .

[36]  George Coulouris,et al.  Distributed systems - concepts and design , 1988 .

[37]  C. Finney,et al.  A review of symbolic analysis of experimental data , 2003 .

[38]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[39]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[40]  Hiroshi Mizoguchi,et al.  Situation reactive handiwork support through behavior understanding , 1997, Proceedings of International Conference on Robotics and Automation.

[41]  Gehirn , .

[42]  David W. Aha,et al.  Tolerating Noisy, Irrelevant and Novel Attributes in Instance-Based Learning Algorithms , 1992, Int. J. Man Mach. Stud..

[43]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1994 .

[44]  Svetlana Domnitcheva,et al.  Location Modeling: State of the Art and Challenges , 2001 .

[45]  Klaus Mainzer Gehirn, Computer, Komplexität , 1997 .

[46]  Rodney A. Brooks,et al.  From earwigs to humans , 1997, Robotics Auton. Syst..

[47]  D. Dietrich,et al.  Evolution potentials for fieldbus systems , 2000, 2000 IEEE International Workshop on Factory Communication Systems. Proceedings (Cat. No.00TH8531).

[48]  Werner Kinnebrock Neuronale Netze: Grundlagen, Anwendungen, Beispiele , 1994 .