Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02778g Click here for additional data file.

Holland and co-workers report details of a novel chelate-free reaction for radiolabeling of pre-fabricated nanoparticles using different radionuclides.

[1]  Feng Chen,et al.  Intrinsically radiolabeled nanoparticles: an emerging paradigm. , 2014, Small.

[2]  M. Meyerand,et al.  Intrinsically Germanium‐69‐Labeled Iron Oxide Nanoparticles: Synthesis and In‐Vivo Dual‐Modality PET/MR Imaging , 2014, Advanced materials.

[3]  Dingbin Liu,et al.  Chelator-Free 64Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy , 2014, ACS nano.

[4]  Jaehong Key,et al.  Positron emitting magnetic nanoconstructs for PET/MR imaging. , 2014, Small.

[5]  L. Zhen,et al.  Hydrothermal synthesis, magnetic and electromagnetic properties of hexagonal Fe3O4 microplates , 2014 .

[6]  R. Weissleder,et al.  Imaging macrophages with nanoparticles. , 2014, Nature materials.

[7]  Jan Grimm,et al.  Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle , 2014, Nature Communications.

[8]  Yong Ding,et al.  Self-Illuminating 64Cu-Doped CdSe/ZnS Nanocrystals for in Vivo Tumor Imaging , 2014, Journal of the American Chemical Society.

[9]  M. Meyerand,et al.  Chelator-free synthesis of a dual-modality PET/MRI agent. , 2013, Angewandte Chemie.

[10]  D. Scheinberg,et al.  Self-assembly of carbon nanotubes and antibodies on tumours for targeted, amplified delivery , 2013, Nature nanotechnology.

[11]  R. Omary,et al.  Image-guided local delivery strategies enhance therapeutic nanoparticle uptake in solid tumors. , 2013, ACS nano.

[12]  I. Mellinghoff,et al.  Imaging Tumor Burden in the Brain with 89Zr-Transferrin , 2013, The Journal of Nuclear Medicine.

[13]  T. Rojo,et al.  Functionalized Fe3O4@Au superparamagnetic nanoparticles: in vitro bioactivity , 2012, Nanotechnology.

[14]  A. Louie,et al.  Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. , 2012, ACS nano.

[15]  Jason S. Lewis,et al.  Annotating MYC oncogene status with 89Zr-transferrin imaging , 2012, Nature Medicine.

[16]  W. Marsden I and J , 2012 .

[17]  R. Weissleder,et al.  89Zr-labeled dextran nanoparticles allow in vivo macrophage imaging. , 2011, Bioconjugate chemistry.

[18]  U. Kolb,et al.  A comparative study of the physicochemical properties of iron isomaltoside 1000 (Monofer), a new intravenous iron preparation and its clinical implications. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[19]  Jason S. Lewis,et al.  Magnitude of Enhanced Permeability and Retention Effect in Tumors with Different Phenotypes: 89Zr-Albumin as a Model System , 2011, The Journal of Nuclear Medicine.

[20]  L. Josephson,et al.  A magnetofluorescent nanoparticle for ex-vivo cell labeling by covalently linking the drugs protamine and Feraheme. , 2011, Journal of nanoscience and nanotechnology.

[21]  David A Scheinberg,et al.  Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes , 2010, International journal of nanomedicine.

[22]  R. Sperling,et al.  Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  William D Rooney,et al.  Superparamagnetic Iron Oxide Nanoparticles: Diagnostic Magnetic Resonance Imaging and Potential Therapeutic Applications in Neurooncology and Central Nervous System Inflammatory Pathologies, a Review , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[24]  Jason S. Lewis,et al.  Unconventional Nuclides for Radiopharmaceuticals , 2010, Molecular imaging.

[25]  Jason S. Lewis,et al.  Standardized methods for the production of high specific-activity zirconium-89. , 2009, Nuclear medicine and biology.

[26]  A. Kausz,et al.  Physicochemical properties of ferumoxytol, a new intravenous iron preparation , 2009, European journal of clinical investigation.

[27]  Greg M Thurber,et al.  18F labeled nanoparticles for in vivo PET-CT imaging. , 2009, Bioconjugate chemistry.

[28]  Leaf Huang,et al.  Pharmacokinetics and biodistribution of nanoparticles. , 2008, Molecular pharmaceutics.

[29]  L. Zhang,et al.  Nanoparticles in Medicine: Therapeutic Applications and Developments , 2008, Clinical pharmacology and therapeutics.

[30]  N. Noginova,et al.  Magnetic resonance in iron oxide nanoparticles: Quantum features and effect of size , 2007, 0711.0168.

[31]  R. Weissleder,et al.  Utility of a new bolus-injectable nanoparticle for clinical cancer staging. , 2007, Neoplasia.

[32]  Omid C Farokhzad,et al.  Co‐Delivery of Hydrophobic and Hydrophilic Drugs from Nanoparticle–Aptamer Bioconjugates , 2007, ChemMedChem.

[33]  Robert Langer,et al.  Targeted nanoparticles for cancer therapy , 2007 .

[34]  R. Langer,et al.  Nanomedicine: developing smarter therapeutic and diagnostic modalities. , 2006, Advanced drug delivery reviews.

[35]  Volker Wagner,et al.  The emerging nanomedicine landscape , 2006, Nature Biotechnology.

[36]  Shuming Nie,et al.  Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery , 2006, Molecular Cancer Therapeutics.

[37]  M. Harisinghani,et al.  Lymphotropic nanoparticle enhanced MR imaging (LNMRI) technique for lymph node imaging. , 2006, European Journal of Radiology.

[38]  J. Richie,et al.  Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Roland Felix,et al.  The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma , 2006, Journal of Neuro-Oncology.

[40]  Audrey Player,et al.  Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. , 2005, Nanomedicine : nanotechnology, biology, and medicine.

[41]  Wei Li,et al.  First‐pass contrast‐enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)‐based blood pool agent , 2005, Journal of magnetic resonance imaging : JMRI.

[42]  Ralph Weissleder,et al.  Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. , 2003, The New England journal of medicine.

[43]  Indrajit Roy,et al.  Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. , 2003, Journal of the American Chemical Society.

[44]  P. Jacobs,et al.  Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. , 1995, Magnetic resonance imaging.

[45]  C. W. Jung Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. , 1995, Magnetic resonance imaging.

[46]  H. Bengele,et al.  Biodistribution of an ultrasmall superparamagnetic iron oxide colloid, BMS 180549, by different routes of administration. , 1994, Magnetic resonance imaging.

[47]  H. Kohno,et al.  Relation between 67Ga uptake and the stage of inflammation induced by turpentine oil in rats. , 1985, Radioisotopes.

[48]  I. Cavill,et al.  The Metabolism of Intravenously Administered Iron‐Dextran , 1973, British journal of haematology.

[49]  R. Stephenson A and V , 1962, The British journal of ophthalmology.