An efficient algorithm for calculating ab initio energy gradients using s, p Cartesian Gaussians

A method is presented for the calculation of analytical first derivatives of the two electron integrals over s‐ and p‐type Cartesian Gaussian basis functions. Formulas are developed for derivatives with respect to the positions of the nuclei and basis functions (for use in geometry optimization) and with respect to the exponents of the primitive Gaussians (for use in basis set optimization). Full use is made of the s = p constraint on the Gaussian exponents. Contributions from an entire shell block are computed together and added to the total energy derivative directly, avoiding the computation and storage of the individual integral derivatives. This algorithm is currently being used in the ab initio molecular orbital program gaussian 80.

[1]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[2]  S. Huzinaga,et al.  Gaussian-Expansion Methods for Molecular Integrals , 1966 .

[3]  D. M. Bishop,et al.  Ab Initio Calculation of Harmonic Force Constants , 1966 .

[4]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[5]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. IV. Use of Gaussian Expansions of Slater‐Type Orbitals. Extension to Second‐Row Molecules , 1970 .

[6]  R. Ditchfield,et al.  Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility , 1972 .

[7]  R. Moccia Static and dynamic first- and second-order properties by variational wave functions , 1974 .

[8]  P. Mezey,et al.  Quality of Gaussian basis sets: Direct optimization of orbital exponents by the method of conjugate gradients , 1975 .

[9]  John A. Pople,et al.  Self‐consistent molecular orbital methods. XV. Extended Gaussian‐type basis sets for lithium, beryllium, and boron , 1975 .

[10]  R. Zahradník,et al.  Direct calculation of the energy gradient with cartesian Gaussian basis sets , 1976 .

[11]  Michel Dupuis,et al.  Evaluation of molecular integrals over Gaussian basis functions , 1976 .

[12]  Michel Dupuis,et al.  Numerical integration using rys polynomials , 1976 .

[13]  A. J. Sadlej,et al.  Molecular electric polarizabilities. Electronic-field-variant (EFV) gaussian basis set for polarizability calculations , 1977 .

[14]  Warren J. Hehre,et al.  Computation of electron repulsion integrals involving contracted Gaussian basis functions , 1978 .

[15]  Henry F. Schaefer,et al.  Gradient techniques for open‐shell restricted Hartree–Fock and multiconfiguration self‐consistent‐field methods , 1979 .

[16]  P. Pulay An efficient ab initio gradient program , 1979 .

[17]  Keiji Morokuma,et al.  Energy gradient in a multi-configurational SCF formalism and its application to geometry optimization of trimethylene diradicals , 1979 .

[18]  J. Pople,et al.  Derivative studies in configuration–interaction theory , 1980 .

[19]  Bernard R. Brooks,et al.  Analytic gradients from correlated wave functions via the two‐particle density matrix and the unitary group approach , 1980 .

[20]  Imre G. Csizmadia,et al.  Computational Theoretical Organic Chemistry , 1981 .

[21]  M. Dupuis Energy derivatives for configuration interaction wave functions , 1981 .

[22]  H. Schlegel,et al.  Optimization of equilibrium geometries and transition structures , 1982 .