Effects of solute segregation on surface properties of dilute Al-X (X = Li, Sn) alloys from first-principles calculations

[1]  T. Pollock,et al.  3D printing of high-strength aluminium alloys , 2017, Nature.

[2]  K. Zhou,et al.  Effect of grain boundary segregation of Co or Ti on cyclic deformation of aluminium bi-crystals , 2017 .

[3]  J. Klöwer,et al.  Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation , 2017 .

[4]  Shaoqing Wang,et al.  Ab-initio study of surface segregation in aluminum alloys , 2017 .

[5]  Liang-ming Yan,et al.  In-situ SEM study of fatigue crack initiation and propagation behavior in 2524 aluminum alloy , 2016 .

[6]  Julien Yvonnet,et al.  Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microCT experiments and phase field simulations , 2016 .

[7]  Jean-François Witz,et al.  Influence of pores on crack initiation in monotonic tensile and cyclic loadings in lost foam casting A319 alloy by using 3D in-situ analysis , 2016 .

[8]  H. Noguchi,et al.  In situ microscopic observations of low-cycle fatigue-crack propagation in high-Mn austenitic alloys with deformation-induced ε-martensitic transformation , 2016 .

[9]  Jianghua Chen,et al.  The possibilities to lower the stacking fault energies of aluminum materials investigated by first-principles energy calculations , 2015 .

[10]  N. Chawla,et al.  Mechanical properties of intermetallic inclusions in Al 7075 alloys by micropillar compression , 2015 .

[11]  K. Zhou,et al.  Effect of grain boundary segregations of Fe, Co, Cu, Ti, Mg and Pb on small plastic deformation of nanocrystalline Al , 2015 .

[12]  M. Demkowicz,et al.  The dual role of coherent twin boundaries in hydrogen embrittlement , 2015, Nature Communications.

[13]  Jörg Rottler,et al.  Solute-defect interactions in Al-Mg alloys from diffusive variational Gaussian calculations , 2014 .

[14]  P. Uggowitzer,et al.  Diffusion on demand to control precipitation aging: application to Al-Mg-Si alloys. , 2014, Physical review letters.

[15]  Liming Peng,et al.  Effect of temperature-induced solute distribution on stacking fault energy in Mg–X(X = Li, Cu, Zn, Al, Y and Zr) solid solution: a first-principles study , 2014 .

[16]  D. Yi,et al.  Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy , 2013 .

[17]  Jérôme Crépin,et al.  Three-dimensional quantitative in situ study of crack initiation and propagation in AA6061 aluminum alloy sheets via synchrotron laminography and finite-element simulations , 2013 .

[18]  Yujuan Yang,et al.  First-principles study of the Al(0 0 1)/Al3Ti(0 0 1) interfacial properties , 2012 .

[19]  Somnath Ghosh,et al.  Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of polycrystalline titanium alloys , 2011 .

[20]  Gregory B Olson,et al.  First principles investigation of zinc-induced embrittlement in an aluminum grain boundary , 2011 .

[21]  A. A. Nazarov,et al.  Relaxation of a disclinated tricrystalline nanowire , 2008 .

[22]  A. A. Nazarov,et al.  Crack nucleation at disclinated triple junctions , 2007 .

[23]  A. Wilkinson,et al.  Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal , 2007 .

[24]  Edward H. Glaessgen,et al.  Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum , 2006 .

[25]  Q. Jiang,et al.  Modelling of surface energies of elemental crystals , 2004 .

[26]  E. A. Starke,et al.  Progress in structural materials for aerospace systems , 2003 .

[27]  M. Polak,et al.  The interplay of surface segregation and atomic order in alloys , 2000 .

[28]  M. Polak,et al.  EVIDENCE FOR SIGNIFICANT SHORT-RANGE ORDER EFFECTS ON SURFACE SEGREGATION IN NI-AL SOLID SOLUTION , 1997 .

[29]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[30]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[31]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[32]  G. S. Cole,et al.  Light weight materials for automotive applications , 1995 .

[33]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[34]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[35]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .

[36]  Jean-Jacques Marigo,et al.  Crack nucleation in variational phase-field models of brittle fracture , 2018 .

[37]  Huseyin Sehitoglu,et al.  A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals , 2011 .

[38]  Y. S. Touloukian Thermal Expansion: Metallic Elements and Alloys , 1975 .