Microfluidics and photonics for Bio‐System‐on‐a‐Chip: A review of advancements in technology towards a microfluidic flow cytometry chip

Microfluidics and photonics come together to form a field commonly referred to as 'optofluidics'. Flow cytometry provides the field with a technology base from which both microfluidic and photonic components be developed and integrated into a useful device. This article reviews some of the more recent developments to familiarize a reader with the current state of the technologies and also highlights the requirements of the device and how researchers are working to meet these needs.

[1]  J. Hahn,et al.  Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis. , 2005, Analytical chemistry.

[2]  J. Michael Ramsey,et al.  Microchip flow cytometry using electrokinetic focusing. , 1999, Analytical chemistry.

[3]  N. Nguyen,et al.  Fundamentals and Applications of Microfluidics , 2002 .

[4]  Daniel L. Feeback,et al.  Microfabrication and test of a three-dimensional polymer hydro-focusing unit for flow cytometry applications , 2005 .

[5]  S. Mangru,et al.  Dynamic DNA hybridization on a chip using paramagnetic beads. , 1999, Analytical chemistry.

[6]  H Morgan,et al.  On-chip high-speed sorting of micron-sized particles for high-throughput analysis. , 2005, IEE proceedings. Nanobiotechnology.

[7]  Tony Jun Huang,et al.  "Microfluidic drifting"--implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. , 2007, Lab on a chip.

[8]  Petra Schwille,et al.  An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. , 2003, Analytical chemistry.

[9]  Paul H. Bessette,et al.  Marker-specific sorting of rare cells using dielectrophoresis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  K. Kurabayashi,et al.  PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes , 2004 .

[11]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[12]  Fan-Gang Tseng,et al.  Development of a monolithic total internal reflection-based biochip utilizing a microprism array for fluorescence sensing , 2005 .

[13]  S. Snyder,et al.  Proceedings of the National Academy of Sciences , 1999 .

[14]  H. Shapiro Practical Flow Cytometry: Shapiro/Flow Cytometry 4e , 2005 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  A. Singh,et al.  Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. , 2003, Analytical chemistry.

[17]  Nickolaj J. Petersen,et al.  Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices , 2001, Electrophoresis.

[18]  R. Austin,et al.  Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds , 1998 .

[19]  S. Quake,et al.  A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Andreas Manz,et al.  On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. , 2004, Analytical chemistry.

[21]  H B Steen,et al.  Noise, sensitivity, and resolution of flow cytometers. , 1992, Cytometry.

[22]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[23]  D J Harrison,et al.  mRNA isolation in a microfluidic device for eventual integration of cDNA library construction. , 2000, The Analyst.

[24]  Che-Hsin Lin,et al.  Vertical focusing device utilizing dielectrophoretic force and its application on microflow cytometer , 2004 .

[25]  Young-Ho Cho,et al.  A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process , 2005 .

[26]  R. Westervelt,et al.  Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices , 2006 .

[27]  Anthony Turner,et al.  Biosensors and Bioelectronics 16 , 2001 .

[28]  Jörg Peter Kutter,et al.  PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behaviour , 2002 .

[29]  Anne Y. Fu,et al.  Microfabricated fluorescence-activated cell sorters ([mu]FACS) for screening bacterial cells , 2002 .

[30]  J. Kutter,et al.  Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. , 2003, Lab on a chip.

[31]  Alan P. Morrison,et al.  Development of a microfluidic device for fluorescence activated cell sorting , 2002 .

[32]  D. Bradley,et al.  Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection. , 2006, Lab on a chip.

[33]  S. Balslev,et al.  Fully integrated optical system for lab-on-a-chip applications , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[34]  Remco J. Wiegerink,et al.  Micro electro mechanical systems: microelectromechanical systems , 2001 .

[35]  Mark A. Naivar,et al.  Single particle high resolution spectral analysis flow cytometry , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[36]  Stefan Sinzinger,et al.  Microoptics: SINZINGER:MICROOPTICS 2ED O-BK , 2005 .

[37]  Ching-Kong Chao,et al.  (Journal of Micromechanics and Microengineering,13(5):748-757)A new microlens array fabrication method using UV proximity printing , 2003 .

[38]  Alex Groisman,et al.  Two-dimensional hydrodynamic focusing in a simple microfluidic device , 2005 .

[39]  S. Quake,et al.  Microfluidic Memory and Control Devices , 2003, Science.

[40]  M. Belotti,et al.  Microfluidic tunable dye laser with integrated mixer and ring resonator , 2005 .

[41]  Hiroyuki Fujita,et al.  Positioning living cells on a high-density electrode array by negative dielectrophoresis , 2003 .

[42]  James N. McMullin,et al.  A multi-layer biochip with integrated hollow waveguides , 2006 .

[43]  Patrick S Daugherty,et al.  Microfluidic library screening for mapping antibody epitopes. , 2007, Analytical chemistry.

[44]  Gwo-Bin Lee,et al.  Micromachined flow cytometers with embedded etched optic fibers for optical detection , 2003 .

[45]  Y Wakamoto,et al.  On-chip culture system for observation of isolated individual cells. , 2001, Lab on a chip.

[46]  Thomas Schnelle,et al.  Combined dielectrophoretic field cages and laser tweezers for electrorotation , 2000 .

[47]  Howard M. Shapiro,et al.  Practical Flow Cytometry , 1985 .

[48]  E. Cummings,et al.  Insulator‐based dielectrophoresis for the selective concentration and separation of live bacteria in water , 2004, Electrophoresis.

[49]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[50]  J Bittoun,et al.  Cell internalization of anionic maghemite nanoparticles: Quantitative effect on magnetic resonance imaging , 2003, Magnetic resonance in medicine.

[51]  清水 康博,et al.  学会レポート The 12th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'03) , 2003 .

[52]  H. Gross,et al.  Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10(-7). , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Christopher C. Davis,et al.  Lasers and Electro-Optics , 1996 .

[54]  Mehmet Toner,et al.  A microfabrication-based dynamic array cytometer. , 2002, Analytical chemistry.

[55]  Sheri J. Lillard,et al.  New approaches to single-cell analysis by capillary electrophoresis , 2001 .

[56]  Gwo-Bin Lee,et al.  Micromachined pre-focusedM×Nflow switches for continuous multi-sample injection , 2001 .

[57]  William Thies,et al.  Digital microfluidics using soft lithography. , 2006, Lab on a chip.

[58]  Gwo-Bin Lee,et al.  Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection , 2004 .

[59]  Valerie L. Ng,et al.  Practical Flow Cytometry, 4th Edition , 2004 .

[60]  Ryuji Koyama,et al.  Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay. , 2003, Lab on a chip.

[61]  J. Meiners,et al.  Topologic mixing on a microfluidic chip , 2004 .

[62]  Wilhelm Rossak,et al.  Toolkit for computational fluidic simulation and interactive parametrization of segmented flow based fluidic networks , 2008 .

[63]  Luke P. Lee,et al.  Disposable integrated microfluidics with self-aligned planar microlenses , 2004 .

[64]  N. Sundararajan,et al.  Three-dimensional hydrodynamic focusing in polydimethylsiloxane (PDMS) microchannels , 2004, Journal of Microelectromechanical Systems.

[65]  H Fujita,et al.  PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. , 2003, Lab on a chip.

[66]  Demetri Psaltis,et al.  Optofluidic dye lasers , 2008 .

[67]  S. Quake,et al.  An Integrated Microfabricated Cell Sorter , 2022 .

[68]  Chih-Ming Ho,et al.  Deformation of DNA molecules by hydrodynamic focusing , 2003, Journal of Fluid Mechanics.

[69]  A D Stroock,et al.  An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. , 2001, Analytical chemistry.

[70]  James N. McMullin,et al.  Integrated optical measurement of microfluid velocity , 2005 .

[71]  B. Onaral,et al.  Engineering in Medicine and Biology Society at the Threshold , 1999, IEEE Engineering in Medicine and Biology Magazine.

[72]  U. Larsen,et al.  Modular concept of a laboratory on a chip for chemical and biochemical analysis , 1998 .

[73]  Sindy K. Y. Tang,et al.  Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. , 2008, Lab on a chip.

[74]  V. Lien,et al.  High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[75]  William G Telford,et al.  Small lasers in flow cytometry. , 2004, Methods in molecular biology.

[76]  D. Beebe,et al.  Physics and applications of microfluidics in biology. , 2002, Annual review of biomedical engineering.

[77]  Vincent Studer,et al.  A microfluidic mammalian cell sorter based on fluorescence detection , 2004 .

[78]  L. Light Engineering in medicine and biology , 1970 .

[79]  Lung-Ming Fu,et al.  Electrokinetic focusing injection methods on microfluidic devices. , 2003, Analytical chemistry.

[80]  K. Mogensen,et al.  Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. , 2004, Lab on a chip.

[81]  Robert S Negrin,et al.  Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. , 2005, Annual review of medicine.

[82]  Donald E Ingber,et al.  Combined microfluidic-micromagnetic separation of living cells in continuous flow , 2006, Biomedical microdevices.

[83]  D. Beebe,et al.  PDMS bonding by means of a portable, low-cost corona system. , 2006, Lab on a chip.

[84]  P. Silberzan,et al.  Microfluidics for biotechnology , 2005 .

[85]  Jun-Bo Yoon,et al.  Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method. , 2004, Optics express.

[86]  A Scherer,et al.  A microfabricated device for sizing and sorting DNA molecules. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Junha Park,et al.  Microfabricated fluorescence-activated cell sorter through hydrodynamic flow manipulation , 2006 .

[88]  David W. M. Marr,et al.  Hydrodynamic focusing for vacuum-pumped microfluidics , 2005 .

[89]  Hiroyuki Honda,et al.  Medical application of functionalized magnetic nanoparticles. , 2005, Journal of bioscience and bioengineering.

[90]  Gwo-Bin Lee,et al.  The hydrodynamic focusing effect inside rectangular microchannels , 2006 .

[91]  George M. Whitesides,et al.  Diffusion-controlled optical elements for optofluidics , 2005 .

[92]  S. Takayama,et al.  Use of Air-Liquid Two-Phase Flow in Hydrophobic Microfluidic Channels for Disposable Flow Cytometers , 2002 .

[93]  H Morgan,et al.  3D focusing of nanoparticles in microfluidic channels. , 2003, IEE proceedings. Nanobiotechnology.

[94]  N. Gershenfeld,et al.  Microfluidic Bubble Logic , 2006, Science.

[95]  G. Whitesides,et al.  Dynamic control of liquid-core/liquid-cladding optical waveguides , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[96]  Samuel K Sia,et al.  Lab-on-a-chip devices for global health: past studies and future opportunities. , 2007, Lab on a chip.

[97]  Dongqing Li,et al.  DC-dielectrophoretic separation of microparticles using an oil droplet obstacle. , 2006, Lab on a chip.

[98]  Patricia Desmond,et al.  Magnetic Resonance in Medicine, 4th edn , 2003 .

[99]  C. Chang-Hasnain Lasers and Electro-Optics , 1995, IEEE Circuits and Devices Magazine.

[100]  Thomas Braschler,et al.  Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies. , 2008, Lab on a chip.

[101]  S G Shirley,et al.  Dielectrophoretic sorting of particles and cells in a microsystem. , 1998, Analytical chemistry.

[102]  C. Bliss,et al.  Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. , 2007, Lab on a chip.

[103]  A. Givan,et al.  Flow Cytometry: First Principles , 1992 .

[104]  John T McDevitt,et al.  A Microchip CD4 Counting Method for HIV Monitoring in Resource-Poor Settings , 2005, PLoS medicine.

[105]  S. Quake,et al.  A microfabricated fluorescence-activated cell sorter , 1999, Nature Biotechnology.

[106]  N. Pamme,et al.  Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. , 2006, Lab on a chip.

[107]  Yuejun Kang,et al.  Continuous separation of microparticles by size with Direct current‐dielectrophoresis , 2006, Electrophoresis.

[108]  V. Lien,et al.  Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers , 2006 .