Backstepping based stabilization and synchronization of a class of fractional order chaotic systems

Abstract This paper presents stabilization and synchronization problem of a class of fractional order chaotic systems. A systematic step by step approach is explained to derive control results using backstepping strategy. The analytically obtained control structure, derived by blending systematic backstepping procedure with Mittag-Leffler stability results, helps in obtaining stability of strict feedback like class of chaotic systems. The results are based on fractional order extension of Lyapunov stability criterion which is a more realistic approach for analysis of stability of fractional order nonlinear systems. These results are further extended to achieve synchronization of these systems in master-slave configuration. Thereafter, the methodology has been applied to two example systems of the same class to show the application of results. Numerical simulation given at the end confirms the efficacy of the scheme presented here.

[1]  Hadi Delavari,et al.  Synchronization of fractional-order hyper-chaotic systems based on a new adaptive sliding mode control , 2017 .

[2]  Mohammad Saleh Tavazoei,et al.  A necessary condition for double scroll attractor existence in fractional-order systems , 2007 .

[3]  Maria da Graça Marcos,et al.  Fractional dynamics in the trajectory control of redundant manipulators , 2008 .

[4]  M. K. Shukla,et al.  Stabilization of Fractional Order Discrete Chaotic Systems , 2017, Fractional Order Control and Synchronization of Chaotic Systems.

[5]  C. Halijak,et al.  Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process , 1964 .

[6]  Yangquan Chen,et al.  Computers and Mathematics with Applications Stability of Fractional-order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–leffler Stability , 2022 .

[7]  Mohammad Saleh Tavazoei,et al.  Chaotic attractors in incommensurate fractional order systems , 2008 .

[8]  Indra Narayan Kar,et al.  Observer-based synchronization scheme for a class of chaotic systems using contraction theory , 2011 .

[9]  F. Mormann,et al.  Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients , 2000 .

[10]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[11]  Yangquan Chen,et al.  Two direct Tustin discretization methods for fractional-order differentiator/integrator , 2003, J. Frankl. Inst..

[12]  Subir Das,et al.  Synchronization of fractional order chaotic systems using active control method , 2012 .

[13]  Junguo Lu Chaotic dynamics of the fractional-order Lü system and its synchronization , 2006 .

[14]  Yoshihiko Nakamura,et al.  The chaotic mobile robot , 2001, IEEE Trans. Robotics Autom..

[15]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[16]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[17]  Runfan Zhang,et al.  Control of a class of fractional-order chaotic systems via sliding mode , 2012 .

[18]  Richard J. Field,et al.  Oscillating chemical reactions and nonlinear dynamics , 1989 .

[19]  Junwei Wang,et al.  Designing synchronization schemes for chaotic fractional-order unified systems , 2006 .

[20]  Igor Podlubny,et al.  Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation , 2001, math/0110241.

[21]  Wenqiang Ji,et al.  Adaptive Sliding Mode Control of a Novel Class of Fractional Chaotic Systems , 2013 .

[22]  Chien-Cheng Tseng,et al.  Design of FIR and IIR fractional order Simpson digital integrators , 2007, Signal Process..

[23]  I. N. Kar,et al.  Contraction based adaptive control of a class of nonlinear systems , 2009, 2009 American Control Conference.

[24]  Abolhassan Razminia,et al.  Full state hybrid projective synchronization of a novel incommensurate fractional order hyperchaotic system using adaptive mechanism , 2012, Indian Journal of Physics.

[25]  Manoj Kumar Shukla,et al.  Stabilization of a class of fractional order chaotic systems via backstepping approach , 2017 .

[26]  Hamed Kebriaei,et al.  Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity , 2010 .

[27]  Sara Dadras,et al.  Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach ☆ , 2013 .

[28]  Xiaohua Xiong,et al.  Extending synchronization scheme to chaotic fractional-order Chen systems , 2006 .

[29]  Jinghua Xiao,et al.  Chaos Synchronization in Coupled Chaotic Oscillators with Multiple Positive Lyapunov Exponents , 1998 .

[30]  M. T. Yassen,et al.  Chaos synchronization between two different chaotic systems using active control , 2005 .

[31]  P. Tse,et al.  Adaptive backstepping output feedback control for a class of nonlinear fractional order systems , 2016 .

[32]  Indra Narayan Kar,et al.  Chaotic Synchronization and Secure Communication Using Contraction Theory , 2009, PReMI.

[33]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[34]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[35]  Yige Zhao,et al.  Feedback stabilisation control design for fractional order non-linear systems in the lower triangular form , 2016 .

[36]  Shuzhi Sam Ge,et al.  Synchronization of Two uncertain Chaotic Systems via Adaptive backstepping , 2001, Int. J. Bifurc. Chaos.

[37]  B. West Fractional Calculus in Bioengineering , 2007 .

[38]  Shouming Zhong,et al.  Design of sliding mode controller for a class of fractional-order chaotic systems , 2012 .

[39]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[40]  B. B. Sharma,et al.  Hybrid projective synchronization of fractional order Volta's system via active control , 2015, 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS).

[41]  Mohammad Saleh Tavazoei,et al.  Robust synchronization of perturbed Chen's fractional-order chaotic systems , 2011 .

[42]  B. B. Sharma,et al.  Stabilization of a class of uncertain fractional order chaotic systems via adaptive backstepping control , 2017, 2017 Indian Control Conference (ICC).

[43]  Zaid Odibat,et al.  Adaptive feedback control and synchronization of non-identical chaotic fractional order systems , 2010 .

[44]  Brian F. Feeny,et al.  PARAMETRIC IDENTIFICATION OF AN EXPERIMENTAL MAGNETO-ELASTIC OSCILLATOR , 2001 .

[45]  Y. Chen,et al.  Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems , 2015 .

[46]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[47]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[48]  T. Chai,et al.  Adaptive synchronization between two different chaotic systems with unknown parameters , 2006 .

[49]  D. Chialvo,et al.  Low dimensional chaos in cardiac tissue , 1990, Nature.

[50]  Binoy Krishna Roy,et al.  Improved Chaotic Dynamics of a Fractional-Order System, its Chaos-Suppressed Synchronisation and Circuit Implementation , 2016, Circuits Syst. Signal Process..

[51]  D. Baleanu,et al.  LMI-based stabilization of a class of fractional-order chaotic systems , 2013 .

[52]  V. Astakhov,et al.  Synchronization of chaotic oscillators by periodic parametric perturbations , 1997 .

[53]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[54]  M. P. Aghababa Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller , 2012 .

[55]  Junzhi Yu,et al.  Dynamic analysis of a fractional-order Lorenz chaotic system , 2009 .

[56]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[57]  V. Anh,et al.  Fractional diffusion and fractional heat equation , 2000, Advances in Applied Probability.

[58]  L. Dorcak Numerical Models for the Simulation of the Fractional-Order Control Systems , 2002 .

[59]  Donglian Qi,et al.  Non-linear Mittag–Leffler stabilisation of commensurate fractional-order non-linear systems , 2015 .

[60]  Zhen Wang Synchronization of an Uncertain Fractional-Order Chaotic System via Backstepping Sliding Mode Control , 2013 .

[61]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[62]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.