A Common Core RNP Structure Shared between the Small Nucleoar Box C/D RNPs and the Spliceosomal U4 snRNP

The box C/D snoRNAs function in directing 2'-O-methylation and/or as chaperones in the processing of ribosomal RNA. We show here that Snu13p (15.5 kD in human), a component of the U4/U6.U5 tri-snRNP, is also associated with the box C/D snoRNAs. Indeed, genetic depletion of Snu13p in yeast leads to a major defect in RNA metabolism. The box C/D motif can be folded into a stem-internal loop-stem structure, almost identical to the 15.5 kD binding site in the U4 snRNA. Consistent with this, the box C/D motif binds Snu13p/ 15.5 kD in vitro. The similarities in structure and function observed between the U4 snRNP (chaperone for U6) and the box C/D snoRNPs raises the interesting possibility that these particles may have evolved from a common ancestral RNP.

[1]  J. Bachellerie,et al.  Guiding ribose methylation of rRNA. , 1997, Trends in biochemical sciences.

[2]  S. Stevens,et al.  Purification of the yeast U4/U6.U5 small nuclear ribonucleoprotein particle and identification of its proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[3]  E. Maxwell,et al.  In vitro assembly of the mouse U14 snoRNP core complex and identification of a 65-kDa box C/D-binding protein. , 1998, RNA.

[4]  H. Urlaub,et al.  Functional interaction of a novel 15.5kD[U4/U6·U5] tri‐snRNP protein with the5′ stem–loop of U4 snRNA , 1999, The EMBO journal.

[5]  M. Mann,et al.  Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. , 1998, RNA.

[6]  D. Tollervey,et al.  Ribosome synthesis in Saccharomyces cerevisiae. , 1999, Annual review of genetics.

[7]  R. Lührmann,et al.  An in vivo and in vitro structure-function analysis of the Saccharomyces cerevisiae U3A snoRNP: protein-RNA contacts and base-pair interaction with the pre-ribosomal RNA. , 1997, Journal of molecular biology.

[8]  P. Roepstorff,et al.  Peptide sequence information derived by partial acid hydrolysis and matrix-assisted laser desorption/ionization mass spectrometry. , 1994, Biological mass spectrometry.

[9]  D. Boisvert,et al.  Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 Å resolution , 2000, The EMBO journal.

[10]  Z. Kiss-László,et al.  Sequence and structural elements of methylation guide snoRNAs essential for site‐specific ribose methylation of pre‐rRNA , 1998, The EMBO journal.

[11]  W. Filipowicz,et al.  Structure and biogenesis of small nucleolar RNAs acting as guides for ribosomal RNA modification. , 1999, Acta biochimica Polonica.

[12]  R. Lührmann,et al.  Isolation of U3 snoRNP from CHO cells: a novel 55 kDa protein binds to the central part of U3 snoRNA. , 1993, Nucleic acids research.

[13]  J. Steitz,et al.  Guided tours: from precursor snoRNA to functional snoRNP. , 1999, Current opinion in cell biology.

[14]  J. Steitz,et al.  An intact Box C sequence in the U3 snRNA is required for binding of fibrillarin, the protein common to the major family of nucleolar snRNPs. , 1991, The EMBO journal.

[15]  Véronique Ségault,et al.  An experimental study of Saccharomyces cerevisiae U3 snRNA conformation in solution , 1992, Nucleic Acids Res..

[16]  J. Wise,et al.  Preparation and analysis of low molecular weight RNAs and small ribonucleoproteins. , 1991, Methods in enzymology.

[17]  J. Steitz,et al.  Sno Storm in the Nucleolus: New Roles for Myriad Small RNPs , 1997, Cell.

[18]  C. Guthrie,et al.  Mechanical Devices of the Spliceosome: Motors, Clocks, Springs, and Things , 1998, Cell.

[19]  P. Philippsen,et al.  New heterologous modules for classical or PCR‐based gene disruptions in Saccharomyces cerevisiae , 1994, Yeast.

[20]  D. Tollervey,et al.  Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. , 1998, Trends in biochemical sciences.

[21]  J. Bachellerie,et al.  Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. , 2000, Journal of molecular biology.

[22]  Josette Banroques,et al.  Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6·U5] tri‐snRNP , 1999, The EMBO journal.

[23]  W. Boelens,et al.  A complex secondary structure in U1A pre‐mRNA that binds two molecules of U1A protein is required for regulation of polyadenylation. , 1993, The EMBO journal.

[24]  R. Terns,et al.  Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli. , 1999, Molecular biology of the cell.

[25]  Gerald R. Fink,et al.  Guide to yeast genetics and molecular biology , 1993 .

[26]  B. Kastner,et al.  Isolation of S. cerevisiae snRNPs: comparison of U1 and U4/U6.U5 to their human counterparts. , 1994, Science.

[27]  J. Hughes,et al.  Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA. , 1996, Journal of molecular biology.

[28]  J. Steitz,et al.  Structural analysis of the human U3 ribonucleoprotein particle reveal a conserved sequence available for base pairing with pre-rRNA. , 1987, Molecular and cellular biology.

[29]  S. Baserga,et al.  Human Nop5/Nop58 is a component common to the box C/D small nucleolar ribonucleoproteins. , 1999, RNA.

[30]  A. Shevchenko,et al.  Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry , 1996, Nature.

[31]  A. Fatica,et al.  Fibrillarin binds directly and specifically to U16 box C/D snoRNA. , 2000, RNA.

[32]  J. Kimura,et al.  Primary structures of three highly acidic ribosomal proteins S6, S12 and S15 from the archaebacterium Halobacterium marismortui , 1987, FEBS letters.

[33]  E. Maxwell,et al.  Identification of specific nucleotide sequences and structural elements required for intronic U14 snoRNA processing. , 1997, RNA.

[34]  D. Tollervey,et al.  Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis , 1997, Molecular and cellular biology.

[35]  R. Müller,et al.  Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. , 1995, Gene.

[36]  M. Fournier,et al.  Functional Mapping of the U3 Small Nucleolar RNA from the Yeast Saccharomyces cerevisiae , 1998, Molecular and Cellular Biology.