Transition-metal-catalyzed synthesis of hydroxylated arenes.

An overview of the recent bibliography in the transition-metal-catalyzed hydroxylation of aryl derivatives is presented. Two reaction protocols are considered: 1) C--H activation/hydroxylation and, 2) cross-coupling hydroxylation of aryl halides. The achievements and limitations for both procedures are described taking into consideration different metal catalyst/oxidant combinations.

[1]  J. Sweeney Alcohols, ethers and phenols , 2010 .

[2]  Melanie S Sanford,et al.  Palladium-catalyzed ligand-directed C-H functionalization reactions. , 2010, Chemical reviews.

[3]  M. Sanford,et al.  O-acetyl oximes as transformable directing groups for Pd-catalyzed C-H bond functionalization. , 2010, Organic letters.

[4]  Zhangjie Shi,et al.  Organopalladium(IV) chemistry. , 2010, Chemical Society reviews.

[5]  Chang-Liang Sun,et al.  Pd-catalyzed oxidative coupling with organometallic reagents via C-H activation. , 2010, Chemical communications.

[6]  Jianji Wang,et al.  Iron-catalyzed conversion of unactivated aryl halides to phenols in water , 2010 .

[7]  L. Ackermann,et al.  Übergangsmetallkatalysierte direkte Arylierungen von (Hetero)Arenen durch C‐H‐Bindungsbruch , 2009 .

[8]  A. Kapdi,et al.  Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. , 2009, Angewandte Chemie.

[9]  Kilian Muñiz Katalyse mit Palladium in hoher Oxidationsstufe: neue Reaktivität für die organische Synthese , 2009 .

[10]  L. Que,et al.  Iron-promoted ortho- and/or ipso-hydroxylation of benzoic acids with H(2)O(2). , 2009, Chemistry.

[11]  K. Muñiz High-oxidation-state palladium catalysis: new reactivity for organic synthesis. , 2009, Angewandte Chemie.

[12]  Arjan J. J. Koekkoek,et al.  A hierarchical Fe/ZSM-5 zeolite with superior catalytic performance for benzene hydroxylation to phenol. , 2009, Chemical communications.

[13]  Johannes E. M. N. Klein,et al.  Bimetallic palladium catalysis: direct observation of Pd(III)-Pd(III) intermediates. , 2009, Journal of the American Chemical Society.

[14]  M. Taillefer,et al.  A very simple copper-catalyzed synthesis of phenols employing hydroxide salts. , 2009, Angewandte Chemie.

[15]  Dongbing Zhao,et al.  Synthesis of phenol, aromatic ether, and benzofuran derivatives by copper-catalyzed hydroxylation of aryl halides. , 2009, Angewandte Chemie.

[16]  jin-quan yu,et al.  Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity. , 2009, Chemical Society reviews.

[17]  jin-quan yu,et al.  Pd(II)-catalyzed hydroxylation of arenes with 1 atm of O(2) or air. , 2009, Journal of the American Chemical Society.

[18]  O. Daugulis,et al.  Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds. , 2009, Accounts of chemical research.

[19]  M. Antonietti,et al.  Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. , 2009, Journal of the American Chemical Society.

[20]  G. McGlacken,et al.  Recent advances in aryl-aryl bond formation by direct arylation. , 2009, Chemical Society reviews.

[21]  S. Buchwald,et al.  On the role of metal contaminants in catalyses with FeCl3. , 2009, Angewandte Chemie.

[22]  T. Ritter,et al.  Bimetallic Pd(III) complexes in palladium-catalysed carbon–heteroatom bond formation. , 2009, Nature chemistry.

[23]  X. Chen,et al.  Palladium(II)‐katalysierte C‐H‐Aktivierung/C‐C‐Kreuzkupplung: Vielseitigkeit und Anwendbarkeit , 2009 .

[24]  jin-quan yu,et al.  Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. , 2009, Angewandte Chemie.

[25]  Stephen L. Buchwald Prof.,et al.  On the Role of Metal Contaminants in Catalyses with FeCl , 2012 .

[26]  M. Sanford,et al.  Detailed study of C-O and C-C bond-forming reductive elimination from stable C2N2O2-ligated palladium(IV) complexes. , 2009, Journal of the American Chemical Society.

[27]  Y. Iwasawa,et al.  Density Functional Theory Study on the Re Cluster/HZSM-5 Catalysis for Direct Phenol Synthesis from Benzene and Molecular Oxygen: Active Re Structure and Reaction Mechanism , 2009 .

[28]  A. Fürstner From oblivion into the limelight: iron (domino) catalysis. , 2009, Angewandte Chemie.

[29]  Alois Fürstner Aus dem Schatten ins Rampenlicht: Eisen(‐Domino)‐Katalyse , 2009 .

[30]  A. Börner,et al.  Practical imidazole-based phosphine ligands for selective palladium-catalyzed hydroxylation of aryl halides. , 2009, Angewandte Chemie.

[31]  G. van Koten,et al.  Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies. , 2008, Chemical Society reviews.

[32]  Hyun Seung Lee,et al.  Regioselective ortho-hydroxylation of aryl moiety of 2-arylpyridines using Pd(OAC)2/Oxone in PEG-3400/tert-BuOH , 2008 .

[33]  jin-quan yu,et al.  Synthesis of 1,2- and 1,3-dicarboxylic acids via Pd(II)-catalyzed carboxylation of aryl and vinyl C-H bonds. , 2008, Journal of the American Chemical Society.

[34]  W. Tolman,et al.  Biologically inspired oxidation catalysis , 2008, Nature.

[35]  M. Sanford,et al.  Insights into directing group ability in palladium-catalyzed C-H bond functionalization. , 2008, Journal of the American Chemical Society.

[36]  Alois Fürstner,et al.  The promise and challenge of iron-catalyzed cross coupling. , 2008, Accounts of chemical research.

[37]  T. Mei,et al.  Pd(II)-catalyzed monoselective ortho halogenation of C-H bonds assisted by counter cations: a complementary method to directed ortho lithiation. , 2008, Angewandte Chemie.

[38]  C. Bolm,et al.  Iron-catalysed carbon-heteroatom and heteroatom-heteroatom bond forming processes. , 2008, Chemical Society reviews.

[39]  Xue‐Liang Wu,et al.  Direct ortho-acetoxylation of anilides via palladium-catalyzed sp(2) C-H bond oxidative activation. , 2008, The Journal of organic chemistry.

[40]  Matthias Beller,et al.  Eisenkatalyse – ein nachhaltiges Prinzip mit Perspektive? , 2008 .

[41]  Matthias Beller,et al.  Sustainable metal catalysis with iron: from rust to a rising star? , 2008, Angewandte Chemie.

[42]  R. SanMartin,et al.  Palladium and copper-catalysed arylation reactions in the presence of water, with a focus on carbon-heteroatom bond formation. , 2008, Chemical Society reviews.

[43]  R. Kaner,et al.  Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water. , 2007, Angewandte Chemie.

[44]  Lawrence Que,et al.  The road to non-heme oxoferryls and beyond. , 2007, Accounts of chemical research.

[45]  V. Gevorgyan,et al.  Direct transition metal-catalyzed functionalization of heteroaromatic compounds. , 2007, Chemical Society reviews.

[46]  R. Bal,et al.  Novel Re-Cluster/HZSM-5 Catalyst for Highly Selective Phenol Synthesis from Benzene and O2: Performance and Reaction Mechanism , 2007 .

[47]  S. Lippard,et al.  Substrate trafficking and dioxygen activation in bacterial multicomponent monooxygenases. , 2007, Accounts of chemical research.

[48]  Ru Jiang Recent Development of Rhenium-Catalyzed Organic Synthesis , 2007 .

[49]  Malcolm L. H. Green,et al.  Agostic interactions in transition metal compounds , 2007, Proceedings of the National Academy of Sciences.

[50]  M. Sanford,et al.  Reactions of hypervalent iodine reagents with palladium: mechanisms and applications in organic synthesis. , 2007, Inorganic chemistry.

[51]  jin-quan yu,et al.  Palladium-catalyzed methylation and arylation of sp2 and sp3 C-H bonds in simple carboxylic acids. , 2007, Journal of the American Chemical Society.

[52]  Robert G. Bergman,et al.  Organometallic chemistry: C–H activation , 2007, Nature.

[53]  A. Chan,et al.  Palladium-catalyzed C–O bond formation: direct synthesis of phenols and aryl/alkyl ethers from activated aryl halides , 2007 .

[54]  Mark E. Scott,et al.  Aryl-aryl bond formation by transition-metal-catalyzed direct arylation. , 2007, Chemical reviews.

[55]  J. Prousek Fenton chemistry in biology and medicine , 2007 .

[56]  X. Xia,et al.  Highly efficient amination of benzene to aniline mediated by bromine with metal oxide as cataloreactant , 2006 .

[57]  S. Buchwald,et al.  The selective reaction of aryl halides with KOH: synthesis of phenols, aromatic ethers, and benzofurans. , 2006, Journal of the American Chemical Society.

[58]  S. Buchwald,et al.  Significantly improved method for the pd-catalyzed coupling of phenols with aryl halides: understanding ligand effects. , 2006, Angewandte Chemie.

[59]  Eric W. Kalberer,et al.  Application of recyclable, polymer-immobilized iodine(III) oxidants in catalytic C–H bond functionalization , 2006 .

[60]  N. Leadbeater,et al.  Direct conversion of aryl halides to phenols using high-temperature or near-critical water and microwave heating , 2006 .

[61]  jin-quan yu,et al.  Cu(II)-catalyzed functionalizations of aryl C-H bonds using O2 as an oxidant. , 2006, Journal of the American Chemical Society.

[62]  L. Que,et al.  High-valent nonheme iron-oxo species in biomimetic oxidations. , 2006, Journal of inorganic biochemistry.

[63]  J. Groves,et al.  High-valent iron in chemical and biological oxidations. , 2006, Journal of inorganic biochemistry.

[64]  Ying Tang,et al.  Direct Oxidation of Benzene to Phenol Catalyzed by Vanadium Substituted Heteropolymolybdic Acid , 2006 .

[65]  M. Sanford,et al.  Transition metal catalyzed oxidative functionalization of carbon-hydrogen bonds , 2006 .

[66]  Louis-Charles Campeau,et al.  Palladium-catalyzed direct arylation of simple arenes in synthesis of biaryl molecules. , 2006, Chemical communications.

[67]  M. Sanford,et al.  Oxone as an inexpensive, safe, and environmentally benign oxidant for C-H bond oxygenation. , 2006, Organic letters.

[68]  R. Bal,et al.  Direct phenol synthesis by selective oxidation of benzene with molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst. , 2006, Angewandte Chemie.

[69]  N. Miyaura,et al.  Iridium-catalyzed borylation of arenes and heteroarenes via C-H activation , 2006 .

[70]  L. Que,et al.  Self-hydroxylation of perbenzoic acids at a nonheme iron(II) center. , 2005, Chemical communications.

[71]  L. Que,et al.  Ortho-hydroxylation of benzoic acids with hydrogen peroxide at a non-heme iron center. , 2005, Chemical communications.

[72]  J. Kampf,et al.  Unusually stable palladium(IV) complexes: detailed mechanistic investigation of C-O bond-forming reductive elimination. , 2005, Journal of the American Chemical Society.

[73]  M. Sanford,et al.  Regioselectivity in palladium-catalyzed C-H activation/oxygenation reactions. , 2005, Organic letters.

[74]  S. V. Kryatov,et al.  Kinetics and mechanisms of formation and reactivity of non-heme iron oxygen intermediates. , 2005, Chemical reviews.

[75]  C. R. Strauss,et al.  Toward rapid, "green", predictable microwave-assisted synthesis. , 2005, Accounts of chemical research.

[76]  S. Buchwald,et al.  Use of tunable ligands allows for intermolecular Pd-catalyzed C--O bond formation. , 2005, Journal of the American Chemical Society.

[77]  A. Fürstner,et al.  Advances in Iron Catalyzed Cross Coupling Reactions , 2005 .

[78]  Ilme Schlichting,et al.  Structure and chemistry of cytochrome P450. , 2005, Chemical reviews.

[79]  M. Abu‐Omar,et al.  Reaction mechanisms of mononuclear non-heme iron oxygenases. , 2005, Chemical reviews.

[80]  R. J. Schmidt,et al.  Industrial catalytic processes: phenol production , 2005 .

[81]  L. Zani,et al.  Iron-catalyzed reactions in organic synthesis. , 2004, Chemical reviews.

[82]  G. Koten,et al.  Carbon-oxygen bond formation at metal(IV) centers: Reactivity of palladium(II) and platinum(II) complexes of the [2,6-(dimethylaminomethyl)phenyl-N, C, N]- (pincer) ligand toward iodomethane and dibenzoyl peroxide; structural studies of M(II) and M(IV) complexes , 2004 .

[83]  K. Jähnisch,et al.  Oxidation and Ammoxidation of Aromatics , 2004 .

[84]  M. Fontecave,et al.  Mechanistic Tuning of Hydrocarbon Oxidations with H2O2, Catalyzed by Hexacoordinate Ferrous Complexes , 2004 .

[85]  D. Mansuy,et al.  Monooxygenation of aromatic compounds by dioxygen with bioinspired systems using non-heme iron catalysts and tetrahydropterins: comparison with other reducing agents and interesting regioselectivity favouring meta-hydroxylation , 2004 .

[86]  M. Sanford,et al.  A highly selective catalytic method for the oxidative functionalization of C-H bonds. , 2004, Journal of the American Chemical Society.

[87]  T. D. Stack,et al.  Structure and spectroscopy of copper-dioxygen complexes. , 2004, Chemical reviews.

[88]  K. Karlin,et al.  Synthetic models for heme-copper oxidases. , 2004, Chemical reviews.

[89]  L. Que,et al.  Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. , 2004, Chemical reviews.

[90]  S. Lippard,et al.  Synthetic models for non-heme carboxylate-bridged diiron metalloproteins: strategies and tactics. , 2004, Chemical reviews.

[91]  William B Tolman,et al.  Reactivity of dioxygen-copper systems. , 2004, Chemical reviews.

[92]  P. Fitzpatrick Mechanism of aromatic amino acid hydroxylation. , 2003, Biochemistry.

[93]  S. V. Ley,et al.  Moderne Synthesemethoden: Kupfer-vermittelte C(Aryl)-O-, C(Aryl)-N- und C(Aryl)-S-Verknüpfungen , 2003 .

[94]  S. Ley,et al.  Modern Synthetic Methods for Copper‐Mediated C(aryl) ? O, C(aryl) ? N, and C(aryl) ? S Bond Formation , 2003 .

[95]  J. Hartwig Palladium‐Catalyzed Synthesis of Aryl Ethers and Related Compounds Containing S and Se , 2003 .

[96]  Z. Rappoport,et al.  The chemistry of phenols , 2003 .

[97]  S. Ogo,et al.  Regioselective hydroxylation of the xylyl linker in a diiron(III) complex having a carboxylate-rich ligand with H2O2. , 2003, Chemical communications.

[98]  Milton R. Smith,et al.  C-H activation/borylation/oxidation: a one-pot unified route to meta-substituted phenols bearing ortho-/para-directing groups. , 2003, Journal of the American Chemical Society.

[99]  W. Herrmann,et al.  Concepts in homogeneous catalysis: the industrial view , 2003 .

[100]  L. Que,et al.  Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant. , 2003, Journal of the American Chemical Society.

[101]  N. Miyaura,et al.  A stoichiometric aromatic CbondH borylation catalyzed by iridium(i)/2,2'-bipyridine complexes at room temperature. , 2002, Angewandte Chemie.

[102]  N. Miyaura,et al.  Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. , 2002, Journal of the American Chemical Society.

[103]  N. Itoh,et al.  A One-Step Conversion of Benzene to Phenol with a Palladium Membrane , 2002, Science.

[104]  Milton R. Smith,et al.  Remarkably Selective Iridium Catalysts for the Elaboration of Aromatic C-H Bonds , 2001, Science.

[105]  M. Smith,et al.  Regioselective aromatic borylation in an inert solvent. , 2001, Organic letters.

[106]  R. Crichton,et al.  Old Iron, Young Copper: from Mars to Venus , 2001, Biometals.

[107]  J. Howard,et al.  Formation of Aryl- and Benzylboronate Esters by Rhodium-Catalyzed C-H Bond Functionalization with Pinacolborane. , 2001, Angewandte Chemie.

[108]  Milton R. Smith,et al.  Steric and Chelate Directing Effects in Aromatic Borylation , 2000 .

[109]  D. Bianchi,et al.  A Novel Iron-Based Catalyst for the Biphasic Oxidation of Benzene to Phenol with Hydrogen Peroxide. , 2000, Angewandte Chemie.

[110]  John F. Hartwig,et al.  Unusual in Situ Ligand Modification to Generate a Catalyst for Room Temperature Aromatic C−O Bond Formation , 2000 .

[111]  Hartwig,et al.  Thermal, catalytic, regiospecific functionalization of alkanes , 2000, Science.

[112]  Hartwig,et al.  Catalytic, Regiospecific End-Functionalization of Alkanes: Rhenium-Catalyzed Borylation under Photochemical Conditions. , 1999, Angewandte Chemie.

[113]  John F. Hartwig,et al.  Katalytische, regiospezifische Funktionalisierung von Alkanen in terminaler Position: photochemisch induzierte, rheniumkatalysierte Borierung , 1999 .

[114]  Milton R. Smith,et al.  Stoichiometric and Catalytic B−C Bond Formation from Unactivated Hydrocarbons and Boranes , 1999 .

[115]  L. Que,et al.  Evidence for a Nonheme Fe(IV)O Species in the Intramolecular Hydroxylation of a Phenyl Moiety , 1999 .

[116]  William B. Tolman,et al.  Ist der Bis(-oxo)dikupfer-Kern fhig, ein Aren zu hydroxylieren? , 1999 .

[117]  Patrick L. Holland,et al.  Is the Bis(μ-oxo)dicopper Core Capable of Hydroxylating an Arene? , 1999, Angewandte Chemie.

[118]  C. Incarvito,et al.  Palladium-Catalyzed C−O Coupling Involving Unactivated Aryl Halides. Sterically Induced Reductive Elimination To Form the C−O Bond in Diaryl Ethers , 1999 .

[119]  Jean-Baptiste Galey,et al.  O2 ACTIVATION AND AROMATIC HYDROXYLATION PERFORMED BY DIIRON COMPLEXES , 1998 .

[120]  C. Bolm,et al.  Transition Metals for Organic Synthesis , 1998 .

[121]  C. A. Ramsden,et al.  Evidence of the Indirect Formation of the Catecholic Intermediate Substrate Responsible for the Autoactivation Kinetics of Tyrosinase* , 1997, The Journal of Biological Chemistry.

[122]  T. Traylor,et al.  Polyhaloporphyrins: Unusual Ligands for Metals and Metal-Catalyzed Oxidations , 1997 .

[123]  D. T. Sawyer,et al.  Metal [MLx; M = Fe, Cu, Co, Mn]/Hydroperoxide-Induced Activation of Dioxygen for the Oxygenation of Hydrocarbons: Oxygenated Fenton Chemistry , 1996 .

[124]  R. Crabtree,et al.  Pd(II) catalyzed acetoxylation of arenes with iodosyl acetate , 1996 .

[125]  Y. Moro-oka,et al.  A reaction mimic of tyrosine hydroxylase: hydroxylation of a phenoxo ferric complex to a catecholato complex with mCPBA , 1993 .

[126]  O. Reinaud,et al.  New and Efficient Conversion of Benzoic Acids into Salicylic Acids via Copper Mediated Hydroxylation Process , 1990 .

[127]  R. Moriarty,et al.  Hypervalent Iodine Oxidation of 1-Trimethylsilyloxy, 1-(2′-Trimethylsilyloxyphenyl)Ethene. Synthesis of 3-Coumaranone and 2,2′-Dihydroxyacetophenone , 1986 .

[128]  Linda J. Vorvick,et al.  Palladium(II) acetate catalyzed aromatic substitution reaction , 1981 .

[129]  L. Eberson,et al.  Palladium(II)‐katalysierte aromatische Acetoxylierung, VIII. Zum Mechanismus der Acetoxylierung aromatischer Verbindungen mit Kaliumperoxydisulfat/Eisessig und 2,2′‐Bipyridinpalladium(II)‐acetat als Katalysator , 1977 .

[130]  C. Swahn,et al.  Palladium(II) Catalyzed Aromatic Acetoxylation. II. Nuclear Acetoxylation of Aromatic Compounds: A Reversal of the Usual Isomer Distribution Pattern in Aromatic Substitution. , 1973 .

[131]  P. Henry Palladium(II)-catalyzed aromatic substitution , 1971 .

[132]  L. Rout,et al.  Recent advances in copper-catalyzed oxidation of organic compounds , 2008 .

[133]  Ying Tang,et al.  Direct oxidation of benzene to phenol catalyzed by a vanadium-substituted heteropolymolybdic acid catalyst , 2006 .

[134]  A. Tateishi,et al.  The ortho-acetoxylation of phenols by copper(II) acetate , 1991 .

[135]  T. Tisue,et al.  Palladium(II)-catalysed nitration of benzene , 1969 .