Synthesis and characterization of CuO-montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite.

[1]  R. Sathyamoorthy,et al.  Flower-shaped CuO Nanostructures: Synthesis, Characterization and Antimicrobial Activity , 2013 .

[2]  Tien-Kan Chung,et al.  Rapid Synthesis of Piezoelectric ZnO-Nanostructures for Micro Power-Generators , 2013 .

[3]  A. Valipour,et al.  Synthesis of Cu/CuO nanoparticles in mesoporous material by solid state reaction. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[4]  A. A. Jalil,et al.  Tailoring the current density to enhance photocatalytic activity of CuO/HY for decolorization of malachite green , 2013 .

[5]  T. Thongtem,et al.  Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry , 2013 .

[6]  Alireza Nezamzadeh-Ejhieh,et al.  Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation , 2013 .

[7]  R. Udayabhaskar,et al.  Synthesis and concentration dependent antibacterial activities of CuO nanoflakes. , 2013, Materials science & engineering. C, Materials for biological applications.

[8]  V. Gopinath,et al.  Biogenic synthesis of antibacterial silver chloride nanoparticles using leaf extracts of Cissus quadrangularis Linn , 2013 .

[9]  S. K. Dolui,et al.  Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. , 2013, Colloids and surfaces. B, Biointerfaces.

[10]  Ameer Azam,et al.  Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study , 2012, International journal of nanomedicine.

[11]  Qiang Zhang,et al.  CuO nanowires prepared via a facile solution route and their photocatalytic property , 2012 .

[12]  Govindasamy Rajakumar,et al.  Synthesis and antimicrobial activity of copper nanoparticles , 2012 .

[13]  Peiyu Wang,et al.  Preparation and characterization of CuO nanoparticles encapsulated in mesoporous Silica , 2012 .

[14]  I. El‐Mehasseb,et al.  CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids , 2012 .

[15]  P. Praus,et al.  Antibacterial and antifungal activities of silver, copper and zinc montmorillonites , 2011 .

[16]  Junhui He,et al.  Fine tuning of the morphology of copper oxide nanostructures and their application in ambient degradation of methylene blue. , 2011, Journal of colloid and interface science.

[17]  O. Akhavan,et al.  Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts , 2010 .

[18]  Jae-Hun Yang,et al.  Development of white antibacterial pigment based on silver chloride nanoparticles and mesoporous silica and its polymer composite , 2010 .

[19]  K. Parida,et al.  Surface characterization and catalytic evaluation of copper-promoted Al-MCM-41 toward hydroxylation of phenol. , 2009, Journal of colloid and interface science.

[20]  O. Akhavan,et al.  Bactericidal effects of Ag nanoparticles immobilized on surface of SiO2 thin film with high concentration , 2009 .

[21]  Georg M. Guebitz,et al.  CuO–cotton nanocomposite: Formation, morphology, and antibacterial activity , 2009 .

[22]  Q. Huang,et al.  Adsorption and biodegradation of carbaryl on montmorillonite, kaolinite and goethite , 2009 .

[23]  O. Akhavan,et al.  Storage of Ag nanoparticles in pore-arrays of SU-8 matrix for antibacterial applications , 2009 .

[24]  E. Radovanovic,et al.  Synthesis and characterization of ZnO, CuO and a mixed Zn and Cu oxide , 2009 .

[25]  M. Loessner,et al.  Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material , 2009, Applied and Environmental Microbiology.

[26]  T. Applegate,et al.  The influence of copper concentration and source on ileal microbiota. , 2009, Poultry science.

[27]  J. S. Lee,et al.  Flower-shaped CuO nanostructures: Structural, photocatalytic and XANES studies , 2008 .

[28]  Anne Kahru,et al.  Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. , 2008, Chemosphere.

[29]  Wen-sheng Hou,et al.  The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials. , 2008, Dental materials : official publication of the Academy of Dental Materials.

[30]  B. Tyagi,et al.  Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[31]  J. Knowles,et al.  Characterisation of antibacterial copper releasing degradable phosphate glass fibres. , 2005, Biomaterials.

[32]  M. Kokkoris,et al.  Study of Antibacterial Composite Cu/SiO2 Thin Coatings , 2003 .

[33]  H. Maibach,et al.  Copper Hypersensitivity: Dermatologie Aspects , 2003, Reviews on environmental health.

[34]  P. Laszlo Heterogeneous catalysis of organic reactions , 1998 .

[35]  M. Romeo,et al.  Migration of Cations in Copper(II)-Exchanged Montmorillonite and Laponite Upon Heating , 1997 .

[36]  P. W. Scott,et al.  Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece , 1997 .

[37]  J. D. Lopez-Gonzalez,et al.  Comparative FT-IR study of the removal of octahedral cations and structural modifications during acid treatment of several silicates , 1996 .