Toward a Formal Macroset Theory

A macroset is a (finite or infinite) set of multisets over a finite alphabet. We introduce a Chomsky-like hierarchy of multiset rewriting devices which, therefore, generate macrosets. Some results are proved about the power of these devices and some open problems are formulated. We also present an algebraic characterization of some of the macroset families as least fixed point solutions of algebraic systems of equations.

[1]  Daniel Le Métayer,et al.  A parallel machine for multiset transformation and its programming style , 1988, Future Gener. Comput. Syst..

[2]  Gheorghe Paun,et al.  Grammars with Controlled Derivations , 1997, Handbook of Formal Languages.

[3]  Daniel Le Métayer,et al.  Gamma and the chemical reaction model: ten years after , 1996 .

[4]  Saul Corn,et al.  Explicit Definitions and Linguistic Dominoes , 1967 .

[5]  Twan Basten,et al.  Parsing Partially Ordered Multisets , 1997, Int. J. Found. Comput. Sci..

[6]  Dung T. Huynh,et al.  Commutative Grammars: The Complexity of Uniform Word Problems , 1984, Inf. Control..

[7]  G Paun,et al.  Computing with Membranes (P Systems): Twenty Six Research Topics , 2000 .

[8]  Grzegorz Rozenberg,et al.  Handbook of formal languages, vol. 3: beyond words , 1997 .

[9]  Alain Colmerauer,et al.  Equations and Inequations on Finite and Infinite Trees , 1984, FGCS.

[10]  Michel Latteux,et al.  Cônes Rationnels Commutativement Clos , 1977, RAIRO Theor. Informatics Appl..

[11]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[12]  Gheorghe Paun,et al.  Regulated Rewriting in Formal Language Theory , 1989 .

[13]  John S. McCaskill,et al.  Chemical evolution among artificial proto-cells , 2000 .

[14]  Gheorghe Paun,et al.  DNA Computing: New Computing Paradigms , 1998 .

[15]  Michel Latteux,et al.  Cônes rationnels commutatifs , 1979, J. Comput. Syst. Sci..

[16]  Gheorghe Paun,et al.  Computing with Membranes: An Introduction , 1999, Bull. EATCS.

[17]  B.-W. Li,et al.  Fuzzy bags and applications , 1990 .

[18]  Arto Salomaa,et al.  Semirings, Automata, Languages , 1985, EATCS Monographs on Theoretical Computer Science.

[19]  Jonathan S. Golan,et al.  The theory of semirings with applications in mathematics and theoretical computer science , 1992, Pitman monographs and surveys in pure and applied mathematics.

[20]  Daniel Le Métayer,et al.  The GAMMA Model and Its Discipline of Programming , 1990, Sci. Comput. Program..

[21]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[22]  Sadaaki Miyamoto,et al.  Basic Operations of Fuzzy Multisets , 1996 .

[23]  Jay L. Gischer,et al.  The Equational Theory of Pomsets , 1988, Theor. Comput. Sci..

[24]  Arto Salomaa,et al.  Semirings, Automata and Languages , 1985 .

[25]  R. Yager ON THE THEORY OF BAGS , 1986 .

[26]  Joseph S. Ullian,et al.  Ambiguity in context free languages , 1966, JACM.