Rapid Functional Maturation of Nascent Dendritic Spines

Spine growth and retraction with synapse formation and elimination plays an important role in shaping brain circuits during development and in the adult brain, yet the temporal relationship between spine morphogenesis and the formation of functional synapses remains poorly defined. We imaged hippocampal pyramidal neurons to identify spines of different ages. We then used two-photon glutamate uncaging, whole-cell recording, and Ca(2+) imaging to analyze the properties of nascent spines and their older neighbors. New spines expressed glutamate-sensitive currents that were indistinguishable from mature spines of comparable volumes. Some spines exhibited negligible AMPA receptor-mediated responses, but the occurrence of these "silent" spines was uncorrelated with spine age. In contrast, NMDA receptor-mediated Ca(2+) accumulations were significantly lower in new spines. New spines reconstructed using electron microscopy made synapses. Our data support a model in which outgrowth and enlargement of nascent spines is tightly coupled to formation and maturation of glutamatergic synapses.

[1]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[2]  M. Colonnier Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. , 1968, Brain research.

[3]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  J. Partridge,et al.  Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses , 1999, Nature Neuroscience.

[5]  Pascal Jourdain,et al.  Calcium/Calmodulin-Dependent Protein Kinase II Contributes to Activity-Dependent Filopodia Growth and Spine Formation , 2003, The Journal of Neuroscience.

[6]  Karel Svoboda,et al.  Induction of Spine Growth and Synapse Formation by Regulation of the Spine Actin Cytoskeleton , 2004, Neuron.

[7]  M. Segal Dendritic spines and long-term plasticity , 2005, Nature Reviews Neuroscience.

[8]  Anirvan Ghosh,et al.  Regulation of AMPA receptor recruitment at developing synapses , 2008, Trends in Neurosciences.

[9]  Karel Svoboda,et al.  Activity-Dependent Plasticity of the NMDA-Receptor Fractional Ca2+ Current , 2007, Neuron.

[10]  R. Weinberg,et al.  Immunogold localization of AMPA and NMDA receptors in somatic sensory cortex of albino rat , 1999, The Journal of comparative neurology.

[11]  Jun Noguchi,et al.  Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites , 2005, Neuron.

[12]  Karel Svoboda,et al.  NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines , 2005, The Journal of Neuroscience.

[13]  A Konnerth,et al.  Release and sequestration of calcium by ryanodine‐sensitive stores in rat hippocampal neurones , 1997, The Journal of physiology.

[14]  R. Malinow,et al.  Maturation of a Central Glutamatergic Synapse , 1996, Science.

[15]  P. Somogyi,et al.  NMDA Receptor Content of Synapses in Stratum Radiatum of the Hippocampal CA1 Area , 2000, The Journal of Neuroscience.

[16]  松崎 政紀 Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001 .

[17]  Stephen J. Smith,et al.  Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation , 1996, Neuron.

[18]  Bernardo L Sabatini,et al.  Neuronal Activity Regulates Diffusion Across the Neck of Dendritic Spines , 2005, Science.

[19]  Dominique Muller,et al.  Activity-dependent PSD formation and stabilization of newly formed spines in hippocampal slice cultures. , 2008, Cerebral cortex.

[20]  Karel Svoboda,et al.  Experience-dependent and cell-type-specific spine growth in the neocortex , 2006, Nature.

[21]  George H. Patterson,et al.  A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells , 2002, Science.

[22]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[23]  Z. Nusser AMPA amd NMDA receptors: similarities and differences in their synaptic distribution , 2000, Current Opinion in Neurobiology.

[24]  B. Gustafsson,et al.  Creation of AMPA-silent synapses in the neonatal hippocampus , 2004, Nature Neuroscience.

[25]  B. Sabatini,et al.  State-Dependent Calcium Signaling in Dendritic Spines of Striatal Medium Spiny Neurons , 2004, Neuron.

[26]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[27]  Tobias Bonhoeffer,et al.  Local calcium transients regulate the spontaneous motility of dendritic filopodia , 2005, Nature Neuroscience.

[28]  B. Gähwiler Organotypic monolayer cultures of nervous tissue , 1981, Journal of Neuroscience Methods.

[29]  J. Isaac,et al.  Expression mechanisms of long-term potentiation in the hippocampus , 1996, Journal of Physiology-Paris.

[30]  D. Muller,et al.  A simple method for organotypic cultures of nervous tissue , 1991, Journal of Neuroscience Methods.

[31]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[32]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[33]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[34]  Charles D. Kopec,et al.  GluR1 Links Structural and Functional Plasticity at Excitatory Synapses , 2007, The Journal of Neuroscience.

[35]  Stephen J. Smith,et al.  Filopodia, Spines, and the Generation of Synaptic Diversity , 2000, Neuron.

[36]  Yi Zuo,et al.  Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex , 2005, Nature.

[37]  Michael J Higley,et al.  Developmental presence and disappearance of postsynaptically silent synapses on dendritic spines of rat layer 2/3 pyramidal neurons , 2008, The Journal of physiology.

[38]  K. Svoboda,et al.  Imaging Calcium Concentration Dynamics in Small Neuronal Compartments , 2004, Science's STKE.

[39]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[40]  R. Yuste,et al.  Morphological changes in dendritic spines associated with long-term synaptic plasticity. , 2001, Annual review of neuroscience.

[41]  KM Harris,et al.  Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [published erratum appears in J Neurosci 1992 Aug;12(8):following table of contents] , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[43]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[44]  R. Huganir,et al.  Synapse-specific regulation of AMPA receptor function by PSD-95 , 2006, Proceedings of the National Academy of Sciences.

[45]  K. Svoboda,et al.  The Number of Glutamate Receptors Opened by Synaptic Stimulation in Single Hippocampal Spines , 2004, The Journal of Neuroscience.

[46]  C. Stevens,et al.  NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus , 1989, Nature.

[47]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[48]  Karel Svoboda,et al.  Molecular Nonlinear [ Ca 2 ] Signaling in Dendrites and Spines Caused by Activity-Dependent Depression of Ca 2 Extrusion , 2006 .

[49]  K. Svoboda,et al.  Spine growth precedes synapse formation in the adult neocortex in vivo , 2006, Nature Neuroscience.

[50]  T. Bonhoeffer,et al.  Bidirectional Activity-Dependent Morphological Plasticity in Hippocampal Neurons , 2004, Neuron.

[51]  Noam E Ziv,et al.  Assembly of New Individual Excitatory Synapses Time Course and Temporal Order of Synaptic Molecule Recruitment , 2000, Neuron.

[52]  G. Knott,et al.  Formation of Dendritic Spines with GABAergic Synapses Induced by Whisker Stimulation in Adult Mice , 2002, Neuron.

[53]  J. Buchanan,et al.  Studies of nerve-muscle interactions in Xenopus cell culture: fine structure of early functional contacts , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[55]  Rafael Yuste,et al.  Spine Motility Phenomenology, Mechanisms, and Function , 2002, Neuron.

[56]  Kristen M Harris,et al.  Dendritic Spine Pathology: Cause or Consequence of Neurological Disorders? , 2002, Brain Research Reviews.

[57]  Bernardo L Sabatini,et al.  Anatomical and physiological plasticity of dendritic spines. , 2007, Annual review of neuroscience.

[58]  E. Kandel,et al.  Structural changes accompanying memory storage. , 1993, Annual review of physiology.

[59]  Rafael Yuste,et al.  Protein kinase A regulates calcium permeability of NMDA receptors , 2006, Nature Neuroscience.

[60]  Mriganka Sur,et al.  Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Richard L. Huganir,et al.  Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons , 1999, Nature Neuroscience.

[62]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[63]  E. G. Jones,et al.  Switching of NMDA Receptor 2A and 2B Subunits at Thalamic and Cortical Synapses during Early Postnatal Development , 2004, The Journal of Neuroscience.

[64]  H. Okado,et al.  Spine Formation and Correlated Assembly of Presynaptic and Postsynaptic Molecules , 2001, The Journal of Neuroscience.

[65]  Kristen M. Harris,et al.  Plasticity-Induced Growth of Dendritic Spines by Exocytic Trafficking from Recycling Endosomes , 2006, Neuron.

[66]  A. McAllister,et al.  Rapid recruitment of NMDA receptor transport packets to nascent synapses , 2002, Nature Neuroscience.

[67]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[68]  Roger A. Nicoll,et al.  Rapid Bidirectional Switching of Synaptic NMDA Receptors , 2007, Neuron.

[69]  P. Somogyi,et al.  High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus , 1995, Neuroscience.

[70]  G. Westbrook,et al.  The Incorporation of NMDA Receptors with a Distinct Subunit Composition at Nascent Hippocampal Synapses In Vitro , 1999, The Journal of Neuroscience.

[71]  Kevan A. C. Martin,et al.  Protracted Synaptogenesis after Activity-Dependent Spinogenesis in Hippocampal Neurons , 2007, The Journal of Neuroscience.

[72]  A. Matus Growth of dendritic spines: a continuing story , 2005, Current Opinion in Neurobiology.

[73]  Mu-ming Poo,et al.  Shrinkage of Dendritic Spines Associated with Long-Term Depression of Hippocampal Synapses , 2004, Neuron.

[74]  Karel Svoboda,et al.  Nonlinear [Ca2+] Signaling in Dendrites and Spines Caused by Activity-Dependent Depression of Ca2+ Extrusion , 2006, The Journal of Neuroscience.

[75]  Noam E. Ziv,et al.  The Dynamics of SAP90/PSD-95 Recruitment to New Synaptic Junctions , 2001, Molecular and Cellular Neuroscience.