An arbitrary Lagrangian -Eulerian method for interfacial flows with insoluble surfactants

An arbitrary Lagrangian-Eulerian (ALE) method for interfacial flows with insoluble surfactants is presented. The interface is captured using a coupled level set and volume of fluid method, which takes advantage of the strengths of both the level set method and the volume of fluid method. By directly tracking the surfactant mass, the method conserves surfactant mass, and prevents surfactant from diffusing off the interface. Interfacial area is also tracked. To accurately approximate the interfacial area, the fluid interface is reconstructed using piecewise parabolas. The surfactant concentration, which determines the local surface tension through an equation of state, is then computed as surfactant mass per interfacial area. The evolution of the level set function, volume fraction, interfacial area, and surfactant mass is performed using an ALE method. The fluid flow is governed by the Stokes equations, which are solved using a finite element method. The surface tension force is included in the momentum equation using a continuum surface stress formulation. To efficiently resolve the complex interfacial dynamics, the grid is adapted at every time step so that the grid near the moving interface is always refined. The method is extendible to 3D, and can be generalized to other types of grids as well. Communicated by John Lowengrub (GuestEditor) and Mark Sussman. keyword: Interfacial flow, Surfactant, Volume of fluid (VOF), Level set, Arbitrary Lagrangian-Eulerian (ALE), Unstructured grid.

[1]  Ivan E. Sutherland,et al.  Reentrant polygon clipping , 1974, Commun. ACM.

[2]  C. Pozrikidis,et al.  Interfacial dynamics for Stokes flow , 2001 .

[3]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[4]  Xiaoming Zheng,et al.  Adaptive unstructured volume remeshing - I: The method , 2005 .

[5]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[6]  T. M. Tsai,et al.  Tip streaming from a drop in the presence of surfactants. , 2001, Physical review letters.

[7]  V. Cristini,et al.  Adaptive unstructured volume remeshing - II: Application to two- and three-dimensional level-set simulations of multiphase flow , 2005 .

[8]  Zhilin Li,et al.  A level-set method for interfacial flows with surfactant , 2006, J. Comput. Phys..

[9]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[10]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[11]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[12]  Vittorio Cristini,et al.  A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio , 2002 .

[13]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[14]  Wulf G. Dettmer,et al.  On a finite element formulation for incompressible Newtonian fluid flows on moving domains in the presence of surface tension , 2003 .

[15]  W. Rider,et al.  Stretching and tearing interface tracking methods , 1995 .

[16]  J. Chen,et al.  Surfactant-induced retardation of the thermocapillary migration of a droplet , 1997, Journal of Fluid Mechanics.

[17]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[18]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[19]  Qiang Zhang,et al.  Three-Dimensional Front Tracking , 1998, SIAM J. Sci. Comput..

[20]  R. Fedkiw,et al.  A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains , 2000 .

[21]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[22]  Yuriko Renardy,et al.  Development and implementation of VOF-PROST for 3D viscoelastic liquid–liquid simulations , 2006 .

[23]  Xu-dong Liu,et al.  A numerical method for solving variable coefficient elliptic equation with interfaces , 2005 .

[24]  Y. T. Hu,et al.  Estimating surfactant surface coverage and decomposing its effect on drop deformation. , 2003, Physical review letters.

[25]  C. Pozrikidis,et al.  A finite-element method for interfacial surfactant transport, with application to the flow-induced deformation of a viscous drop , 2004 .

[26]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[27]  Xiaofan Li,et al.  The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow , 1997, Journal of Fluid Mechanics.

[28]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[29]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[30]  Gretar Tryggvason,et al.  Bifurcation of tracked scalar waves , 1986 .

[31]  M. Sussman A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles , 2003 .

[32]  K. Stebe,et al.  Marangoni effects on drop deformation in an extensional flow: The role of surfactant physical chemistry. I. Insoluble surfactants , 1996 .

[33]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[34]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[35]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[36]  J. Lowengrub,et al.  A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant , 2004 .

[37]  Patrick Patrick Anderson,et al.  Diffuse interface modeling of the morphology and rheology of immiscible polymer blends , 2003 .

[38]  V. Meleshko Selected topics in the history of the two-dimensional biharmonic problem , 2003 .

[39]  D. An,et al.  The effects of surfactants on drop deformation and breakup By , 2005 .

[40]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[41]  M. Miksis,et al.  Bubble rising in an inclined channel , 2002 .

[42]  Stanley Osher,et al.  An Eulerian Approach for Vortex Motion Using a Level Set Regularization Procedure , 1996 .

[43]  David S. Rumschitzki,et al.  On the surfactant mass balance at a deforming fluid interface , 1996 .

[44]  Howard A. Stone,et al.  The effect of surfactant on the transient motion of Newtonian drops , 1993 .

[45]  Zhilin Li The immersed interface method: a numerical approach for partial differential equations with interfaces , 1995 .

[46]  C. Pozrikidis,et al.  Effect of surfactants on the deformation of drops and bubbles in Navier–Stokes flow , 2006 .

[48]  Thomas Y. Hou,et al.  Boundary integral methods for multicomponent fluids and multiphase materials , 2001 .

[49]  J. Sethian,et al.  Transport and diffusion of material quantities on propagating interfaces via level set methods , 2003 .

[50]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[51]  H. Stone A simple derivation of the time‐dependent convective‐diffusion equation for surfactant transport along a deforming interface , 1990 .

[52]  Héctor D. Ceniceros,et al.  The effects of surfactants on the formation and evolution of capillary waves , 2003 .

[53]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[54]  Vittorio Cristini,et al.  An adaptive mesh algorithm for evolving surfaces: simulation of drop breakup and coalescence , 2001 .

[55]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[56]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[57]  Hongkai Zhao,et al.  An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface , 2003, J. Sci. Comput..

[58]  James M. Hyman,et al.  Numerical methods for tracking interfaces , 1984 .

[59]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[60]  C. Pozrikidis,et al.  A Finite-volume/Boundary-element Method for Flow Past Interfaces in the Presence of Surfactants, with Application to Shear Flow Past a Viscous Drop , 1998 .

[61]  Brian T. Helenbrook,et al.  A Numerical Method for Solving Incompressible Flow Problems with a Surface of Discontinuity , 1999 .

[62]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[63]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[64]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[65]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[66]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[67]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[68]  R. Scardovelli,et al.  A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows , 2003 .

[69]  Charles D. Eggleton,et al.  Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces , 1999, Journal of Fluid Mechanics.

[70]  Daniel Sunday Fast Polygon Area and Newell Normal Computation , 2002, J. Graphics, GPU, & Game Tools.

[71]  Xiaofeng Yang,et al.  An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids , 2006, J. Comput. Phys..

[72]  Han E. H. Meijer,et al.  Droplet behavior in the presence of insoluble surfactants , 2004 .

[73]  M. Renardy,et al.  PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method , 2002 .