A computationally efficient Multicomponent Equilibrium Solver for Aerosols (MESA)

[1] Development and application of a new Multicomponent Equilibrium Solver for Aerosols (MESA) is described for systems containing H+, NH4+, Na+, Ca2+, SO42−, HSO4−, NO3−, and Cl− ions. The equilibrium solution is obtained by integrating a set of pseudo-transient ordinary differential equations describing the precipitation and dissolution reactions for all the possible salts to steady state. A comprehensive temperature dependent mutual deliquescence relative humidity (MDRH) parameterization is developed for all the possible salt mixtures, thereby eliminating the need for a rigorous numerical solution when ambient RH is less than MDRH(T). The solver is unconditionally stable, mass conserving, and shows robust convergence. Performance of MESA was evaluated against the Web-based AIM Model III, which served as a benchmark for accuracy, and the EQUISOLV II solver for speed. Important differences in the convergence and thermodynamic errors in MESA and EQUISOLV II are discussed. The average ratios of speeds of MESA over EQUISOLV II ranged between 1.4 and 5.8, with minimum and maximum ratios of 0.6 and 17, respectively. Because MESA directly diagnoses MDRH, it is significantly more efficient when RH 240 K) in which both accuracy and computational efficiency are critical.

[1]  V. Venkatakrishnan Newton solution of inviscid and viscous problems , 1988 .

[2]  J. Seinfeld,et al.  Atmospheric Gas-Aerosol Equilibrium: IV. Thermodynamics of Carbonates , 1995 .

[3]  A. Nenes,et al.  ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols , 1998 .

[4]  C. Chan,et al.  Continuous Measurements of the Water Activities of the Mg2+−Ca2+−Na+−Cl-−NO3-−SO42-−H2O System , 2002 .

[5]  J. Seinfeld,et al.  Studies of concentrated electrolyte solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions , 1987 .

[6]  A. Wexler,et al.  Identifying solid-aqueous phase transitions in atmospheric aerosols—I. Neutral-acidity solutions , 1995 .

[7]  R. Sheikholeslami,et al.  Kinetics and thermodynamics of calcium carbonate and calcium sulfate at salinities up to 1.5 M , 2003 .

[8]  Mian Chin,et al.  Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing , 2003 .

[9]  David E. Keyes,et al.  Pseudotransient Continuation and Differential-Algebraic Equations , 2003, SIAM J. Sci. Comput..

[10]  T. Onasch,et al.  Deliquescence, Efflorescence, and Water Activity in Ammonium Nitrate and Mixed Ammonium Nitrate/Succinic Acid Microparticles , 2000 .

[11]  S. Pandis,et al.  Prediction of multicomponent inorganic atmospheric aerosol behavior , 1999 .

[12]  A. Wexler,et al.  Thermodynamic Model of the System H+−NH4+−Na+−SO42-−NO3-−Cl-−H2O at 298.15 K , 1998 .

[13]  I. Tang,et al.  Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols , 1993 .

[14]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[15]  Dana A. Knoll,et al.  Enhanced Nonlinear Iterative Techniques Applied to a Nonequilibrium Plasma Flow , 1998, SIAM J. Sci. Comput..

[16]  J. Seinfeld,et al.  A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, differences, and their likely causes , 2000 .

[17]  R. Robinson,et al.  Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria , 1966 .

[18]  Peter Brimblecombe,et al.  Thermodynamic Model of the System H+−NH4+−SO42-−NO3-−H2O at Tropospheric Temperatures , 1998 .

[19]  I. Tang,et al.  Aerosol Phase Transformation and Growth in the Atmosphere , 1994 .

[20]  M. Jacobson Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II , 1999 .

[21]  Tarun Kant,et al.  Transient/pseudo-transient finite element small/large deformation analysis of two-dimensional problems , 1990 .

[22]  J. Seinfeld,et al.  Second-generation inorganic aerosol model , 1991 .

[23]  K. Pitzer,et al.  Thermodynamics of multicomponent, miscible, ionic systems , 1986 .

[24]  J. Seinfeld,et al.  Atmospheric Gas-Aerosol Equilibrium I. Thermodynamic Model , 1993 .

[25]  L. A. Bromley Thermodynamic properties of strong electrolytes in aqueous solutions , 1973 .

[26]  S. Pandis,et al.  An Analysis of Four Models Predicting the Partitioning of Semivolatile Inorganic Aerosol Components , 1999 .

[27]  K. Pitzer,et al.  Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent , 1973 .

[28]  R. Turco,et al.  Simulating equilibrium within aerosols and nonequilibrium between gases and aerosols , 1996 .

[29]  I. Tang Thermodynamic and optical properties of mixed‐salt aerosols of atmospheric importance , 1997 .

[30]  David E. Keyes,et al.  Numerical Solution of Two-Dimensional Axisymmetric Laminar Diffusion Flames , 1986 .

[31]  T. Onasch,et al.  Temperature-Dependent Heterogeneous Efflorescence of Mixed Ammonium Sulfate/Calcium Carbonate Particles , 2000 .

[32]  F. Millero,et al.  Modeling Heat Capacities of High Valence-Type Electrolyte Solutions with Pitzer's Equations , 1999 .

[33]  Anthony S. Wexler,et al.  A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols , 2005 .

[34]  A. Wexler,et al.  Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42−, NO3−, Cl−, Br−, and H2O , 2002 .

[35]  Peter Brimblecombe,et al.  Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes , 1992 .

[36]  Kenneth S. Pitzer,et al.  Thermodynamics of multicomponent, miscible, ionic systems: theory and equations , 1986 .

[37]  K. H. Fung,et al.  Phase transformation and metastability of hygroscopic microparticles , 1995 .

[38]  J. Seinfeld,et al.  Atmospheric Gas–Aerosol Equilibrium: III. Thermodynamics of Crustal Elements Ca2+, K+, and Mg2+ , 1995 .

[39]  K. H. Fung,et al.  Hydration and Raman scattering studies of levitated microparticles: Ba(NO3)2, Sr(NO3)2, and Ca(NO3)2 , 1997 .

[40]  A. Wexler,et al.  Identifying solid-aqueous-phase transitions in atmospheric aerosols. II. Acidic solutions , 1995 .

[41]  I. Tang,et al.  Aerosol growth studies — IV. Phase transformation of mixed salt aerosols in a moist atmosphere , 1978 .

[42]  J. Seinfeld,et al.  Atmospheric gas−aerosol equilibrium. II: Analysis of common approximations and activity coefficient calculation methods , 1993 .