Soil macronutrient sensing for precision agriculture.

Accurate measurements of soil macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for efficient agricultural production, including site-specific crop management (SSCM), where fertilizer nutrient application rates are adjusted spatially based on local requirements. Rapid, non-destructive quantification of soil properties, including nutrient levels, has been possible with optical diffuse reflectance sensing. Another approach, electrochemical sensing based on ion-selective electrodes or ion-selective field effect transistors, has been recognized as useful in real-time analysis because of its simplicity, portability, rapid response, and ability to directly measure the analyte with a wide range of sensitivity. Current sensor developments and related technologies that are applicable to the measurement of soil macronutrients for SSCM are comprehensively reviewed. Examples of optical and electrochemical sensors applied in soil analyses are given, while advantages and obstacles to their adoption are discussed. It is proposed that on-the-go vehicle-based sensing systems have potential for efficiently and rapidly characterizing variability of soil macronutrients within a field.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  R. H. Bray,et al.  DETERMINATION OF TOTAL, ORGANIC, AND AVAILABLE FORMS OF PHOSPHORUS IN SOILS , 1945 .

[3]  S. R. Olsen,et al.  Estimation of available phosphorus in soils by extraction with sodium bicarbonate , 1954 .

[4]  E. Paul,et al.  NITRATE ION ELECTRODE METHOD FOR SOIL NITRATE NITROGEN DETERMINATION , 1968 .

[5]  M. K. Mahendrappa DETERMINATION OF NITRATE NITROGEN IN SOIL EXTRACTS USING A SPECIFIC ION ACTIVITY ELECTRODE , 1969 .

[6]  A. Selmer-Olsen,et al.  Nitrate determination in soil extracts with the nitrate electrode , 1969 .

[7]  H. D. Sunderman,et al.  Use of the nitrate electrode for determination of nitrates in soils , 1970 .

[8]  A. Henriksen,et al.  Automatic methods for determining nitrate and nitrite in water and soil extracts , 1970 .

[9]  W. C. Dahnke Use of the nitrate specific ion electrode in soil testing , 1971 .

[10]  A. R. Mack,et al.  SENSITIVITY OF THE NITRATE-ION MEMBRANE ELECTRODE IN VARIOUS SOIL EXTRACTS , 1971 .

[11]  Curtis C. Johnson,et al.  Potassium ion-sensitive field effect transistor , 1975 .

[12]  Elo Harald Hansen,et al.  New nitrate ion-selective electrodes based on quaternary ammonium compounds in nonporous polymer membranes , 1976 .

[13]  G. P. Bound Determination of nitrate in soil pastes by ion selective electrodes , 1977 .

[14]  E H Hansen,et al.  Flow injection analysis of environmental samples for nitrate using an ion-selective electrode. , 1977, The Analyst.

[15]  K. Barbarick,et al.  Soil nitrate analysis by cadmium reduction 1 , 1981 .

[16]  D. W. Nelson,et al.  Evaluation of manual cadmium reduction methods for determination of nitrate in potassium chloride extracts of soils , 1984 .

[17]  Sheng-xiu Li,et al.  The rapid determination of nitrate at low concentrations in soil extracts: comparison of ion-selective electrode with continuous-flow analysis , 1984 .

[18]  A. Sibbald,et al.  A miniature flow-through cell with a four-function chemfet integrated circuit for simultaneous measurements of potassium, hydrogen, calcium and sodium ions , 1984 .

[19]  Y. Ujihira,et al.  Potassium ion-sensitive field effect transistors using valinomycin doped photoresist membrane , 1984 .

[20]  F. Magdoff,et al.  A Soil Test for Nitrogen Availability to Corn , 1984 .

[21]  A. Mehlich Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant , 1984 .

[22]  W. V. Lierop Sol nitrate determination using the kelowna multiple element extractant , 1986 .

[23]  R. Henry,et al.  Simultaneous Determination of Moisture, Organic Carbon, and Total Nitrogen by Near Infrared Reflectance Spectrophotometry , 1986 .

[24]  R. Farrell,et al.  Ion-selective Electrode Determinations of Exchangeable Potassium in Soils1 , 1987 .

[25]  John L. Walker Ion-selective microelectrodes: Principles, design and application: By Daniel Ammann, Springer-Verlag, Berlin/New York, 1986. 346 pp , 1987 .

[26]  Jonathan M. Slater,et al.  Modified poly(vinyl chloride) matrix membranes for ion-selective field effect transistor sensors , 1988 .

[27]  G. J. Moody,et al.  Membrane design and photocuring encapsulation of flatpack based ion-sensitive field effect transistors. , 1988, The Analyst.

[28]  M A Arnold,et al.  Phosphate-selective polymer membrane electrode. , 1988, Analytical chemistry.

[29]  W. V. Lierop DETERMINATION OF AVAILABLE PHOSPHORUS IN ACID AND CALCAREOUS SOILS WITH THE KELOWNA MULTIPLE‐ELEMENT EXTRACTANT , 1988 .

[30]  Yuji Miyahara,et al.  Long-life multiple-ISFETS with polymeric gates , 1989 .

[31]  W. V. Lierop,et al.  Extraction of potassium and sodium from acid and calcareous soils with the Kelowna multiple element extractant , 1989 .

[32]  A. Blackmer,et al.  Correlations between Soil Nitrate Concentrations in Late Spring and Corn Yields in Iowa , 1989 .

[33]  Kurt Seiler,et al.  Design of a novel calcium-selective optode membrane based on neutral ionophores , 1990 .

[34]  M. Arnold,et al.  Selectivity of membrane electrodes based on derivatives of dibenzyltin dichloride. , 1991, Analytical chemistry.

[35]  Meinhard Knoll,et al.  Microfibre matrix-supported ion-selective PVC membranes , 1994 .

[36]  N. Chaniotakis,et al.  Multiorganyltin Compounds. Designing a novel phosphate‐selective carrier , 1994 .

[37]  C M Carey,et al.  Cyclic polyamine ionophore for use in a dibasic phosphate-selective electrode. , 1994, Analytical chemistry.

[38]  K. J. Sibley,et al.  Laboratory evaluation of the ion selective electrode for use in an automated soil nitrate monitoring system , 1994 .

[39]  Hong-Yan. Yuan,et al.  Surface-modified cobalt-based sensor as a phosphate-sensitive electrode , 1995 .

[40]  M. Meyerhoff,et al.  Mixed potential response mechanism of cobalt electrodes toward inorganic phosphate. , 1996, Analytical chemistry.

[41]  Peter W. Alexander,et al.  Flow-injection Potentiometric Detection of Phosphates Using a Metallic Cobalt Wire Ion-selective Electrode , 1997 .

[42]  F. J. Pierce,et al.  The state of site specific management for agriculture. , 1997 .

[43]  Guo-Li Shen,et al.  Polymeric membrane phosphate sensitive electrode based on binuclear organotin compound , 1997 .

[44]  Electrochemical properties of photocurable membranes for all-solid-state chemical sensors , 1998 .

[45]  Bobby Pejcic,et al.  Flow injection potentiometric determination of phosphate in waste waters and fertilisers using a cobalt wire ion-selective electrode , 1998 .

[46]  K. Paeng,et al.  Potassium-Selective PVC Membrane Electrodes Based on Newly Synthesized cis- and trans-Bis(crown ether)s , 1998 .

[47]  M. Adams,et al.  Direct determination of phosphate in soil extracts by potentiometric flow injection using a cobalt wire electrode , 1998 .

[48]  P. Bühlmann,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. , 1998, Chemical reviews.

[49]  S. Dakota Recommended Chemical Soil Test Procedures for the North Central Region , 1998 .

[50]  S O Engblom,et al.  The phosphate sensor. , 1998, Biosensors & bioelectronics.

[51]  D. Reinhoudt,et al.  Potentiometric anion selective sensors , 1999 .

[52]  J. F. Adsett,et al.  DEVELOPMENT OF AN AUTOMATED ON-THE-GO SOIL NITRATE MONITORING SYSTEM , 1999 .

[53]  D. R. Ess,et al.  AN AUTOMATED SAMPLING SYSTEM FOR MEASURING SOIL pH , 1999 .

[54]  Development of a sensitive nitrate-selective electrode for on-site use in fresh waters , 1999 .

[55]  E Pretsch,et al.  Polymeric membrane electrodes for monohydrogen phosphate and sulfate. , 2000, Analytical chemistry.

[56]  Stuart J. Birrell,et al.  Membrane Selection and ISFET Configuration Evaluation for Soil Nitrate Sensing , 2000 .

[57]  D. Reinhoudt,et al.  Uranyl salophenes as ionophores for phosphate-selective electrodes , 2000 .

[58]  Antonio Baldi,et al.  Application of ion sensitive field effect transistor based sensors to soil analysis , 2001 .

[59]  I. Tsagkatakis,et al.  Phosphate-Binding Characteristics and Selectivity Studies of Bifunctional Organotin Carriers , 2001 .

[60]  J. Kaiser The Other Global Pollutant: Nitrogen Proves Tough to Curb , 2001, Science.

[61]  Artur Dybko,et al.  Durable phosphate-selective electrodes based on uranyl salophenes , 2001 .

[62]  C. Hurburgh,et al.  Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties , 2001 .

[63]  Stuart J. Birrell,et al.  Real-time multi ISFET/FIA soil analysis system with automatic sample extraction , 2001 .

[64]  RESPONSE OF POLYMER MEMBRANES AS SENSING ELEMENTS FOR AN ELECTRONIC TONGUE , 2002 .

[65]  B. Eggins Chemical Sensors and Biosensors , 2002 .

[66]  D. Scholefield,et al.  An accurate and stable nitrate-selective electrode for the in situ determination of nitrate in agricultural drainage waters. , 2002, The Analyst.

[67]  Izumi Kubo Potentiometric phosphate-sensing system utilizing phosphate-binding protein , 2002, Analytical and bioanalytical chemistry.

[68]  Won Suk Lee,et al.  ESTIMATING CHEMICAL PROPERTIES OF FLORIDA SOILS USING SPECTRAL REFLECTANCE , 2003 .

[69]  Stuart J. Birrell,et al.  RAPID NITRATE ANALYSIS OF SOIL CORES USING ISFETS , 2003 .

[70]  R. de Marco,et al.  Determination of phosphate in hydroponic nutrient solutions using flow injection potentiometry and a cobalt-wire phosphate ion-selective electrode. , 2003, Talanta.

[71]  A. Mallarino Field Calibration for Corn of the Mehlich-3 Soil Phosphorus Test with Colorimetric and Inductively Coupled Plasma Emission Spectroscopy Determination Methods , 2003 .

[72]  M. Morgan,et al.  Potential Uses of Ion‐Selective Potassium Electrodes in Soil Fertility Management , 2003 .

[73]  I. Shmulevich,et al.  Fourier Transform Infrared—Attenuated Total Reflection Nitrate Determination of Soil Pastes Using Principal Component Regression, Partial Least Squares, and Cross-Correlation , 2004, Applied spectroscopy.

[74]  D. Slaughter,et al.  A NIR Technique for Rapid Determination of Soil Mineral Nitrogen , 1999, Precision Agriculture.

[75]  Christian Walter,et al.  Rapid, quantitative and spatial field measurements of soil pH using an Ion Sensitive Field Effect Transistor , 2004 .

[76]  Viacheslav I. Adamchuk,et al.  On-the-go soil sensors for precision agriculture , 2004 .

[77]  Salvador Alegret,et al.  A flow-injection electronic tongue based on potentiometric sensors for the determination of nitrate in the presence of chloride , 2004 .

[78]  S. Sasaki,et al.  Organic tin compounds combined with anionic additives-an ionophore system leading to a phosphate ion-selective electrode? , 2004, Talanta.

[79]  P J A Kleinman,et al.  A simple method to predict dissolved phosphorus in runoff from surface-applied manures. , 2004, Journal of environmental quality.

[80]  Julian Alonso,et al.  In-soil potassium sensor system. , 2004, Journal of agricultural and food chemistry.

[81]  A. Miller,et al.  Measurement of intracellular nitrate concentrations in Chara using nitrate-selective microelectrodes , 1991, Planta.

[82]  Sten O. Engblom,et al.  Determination of inorganic phosphate in a soil extract using a cobalt electrode , 1999, Plant and Soil.

[83]  M. Payton,et al.  Differences of Phosphorus in Mehlich 3 Extracts Determined by Colorimetric and Spectroscopic Methods , 2005 .

[84]  J. Alonso,et al.  Flow injection potentiometric system for the simultaneous determination of inositol phosphates and phosphate: phosphorus nutritional evaluation on seeds and grains. , 2005, Journal of agricultural and food chemistry.

[85]  S. Waring,et al.  Nitrate determination in an oxisol using K2SO4 extraction and the nitrate-specific ion electrode , 2005, Plant and Soil.

[86]  Jim Freer,et al.  Spatial variability of soil phosphorus in relation to the topographic index and critical source areas: sampling for assessing risk to water quality. , 2005, Journal of environmental quality.

[87]  D. Marx,et al.  Direct measurement of soil chemical properties on-the-go using ion-selective electrodes , 2005 .

[88]  I. Shmulevich,et al.  Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy. , 2005, Chemosphere.

[89]  A. H. Gómez,et al.  Measurement and analysis of soil nitrogen and organic matter content using near-infrared spectroscopy techniques. , 2005, Journal of Zhejiang University. Science. B.

[90]  R. Hoeft,et al.  Spatial variability of the Illinois soil nitrogen test: Implications for soil sampling , 2005 .

[91]  Kenneth A. Sudduth,et al.  Development of a conservation-oriented precision agriculture system: Crop production assessment and plan implementation , 2005 .

[92]  H. Ramon,et al.  Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer , 2005 .

[93]  WAVELET-BASED SPECTRAL ANALYSIS FOR SOIL NITRATE CONTENT MEASUREMENT , 2005 .

[94]  Won Suk Lee,et al.  Spectral Phosphorus Mapping using Diffuse Reflectance of Soils and Grass , 2005 .

[95]  R. V. Rossel,et al.  Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties , 2006 .

[96]  W. S. Lee,et al.  Effects of soil moisture content on absorbance spectra of sandy soils in sensing phosphorus concentrations using UV-VIS-NIR spectroscopy , 2006 .

[97]  Itzhak Shmulevich,et al.  Nitrate Determination in Soil Pastes using Attenuated Total Reflectance Mid-infrared Spectroscopy: Improved Accuracy via Soil Identification , 2006 .

[98]  Stuart J. Birrell,et al.  EVALUATION OF NITRATE AND POTASSIUM ION-SELECTIVE MEMBRANES FOR SOIL MACRONUTRIENT SENSING , 2006 .

[99]  David C. Slaughter,et al.  Mid-infrared Spectroscopic Determination of Soil Nitrate Content , 2006 .

[100]  G. Meyer,et al.  Analysis of an Ion-Selective Electrode Based Methodology for Integrated On-The-Go Mapping of Soil pH, Potassium, and Nitrate Contents , 2007 .

[101]  Yong He,et al.  Prediction of soil macronutrients content using near-infrared spectroscopy , 2007 .

[102]  H. Ramon,et al.  On-line measurement of some selected soil properties using a VIS–NIR sensor , 2007 .

[103]  Scott A. Staggenborg,et al.  Predicting soil pH and buffer pH in situ with a real-time sensor , 2007 .

[104]  Won Suk Lee,et al.  Comparison of Ultraviolet, Visible, and Near Infrared Sensing for Soil Phosphorus , 2007 .

[105]  Viacheslav I. Adamchuk,et al.  Evaluation of an on-the-go technology for soil pH mapping , 2007, Precision Agriculture.

[106]  K. Sudduth,et al.  Simultaneous Analysis of Soil Macronutrients Using Ion-Selective Electrodes , 2007 .

[107]  P. Struik,et al.  An On-The-Go Soil Sampler for an Automated Soil Nitrate Mapping System , 2008 .

[108]  K. Sudduth,et al.  Preprocessing and Calibration of Optical Diffuse Reflectance Signal for Estimation of Soil Physical and Chemical Properties in the Central USA , 2008 .

[109]  C. D. Christy,et al.  Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy , 2008 .

[110]  Paul C. Struik,et al.  Field-scale validation of an automated soil nitrate extraction and measurement system , 2009, Precision Agriculture.

[111]  A. Klute,et al.  Methods of soil analysis , 2015, American Potato Journal.

[112]  David C. Jones,et al.  Agitated soil measurement method for integrated on-the-go mapping of soil pH, potassium and nitrate contents , 2008 .

[113]  K. Sudduth,et al.  Sampling and Calibration Requirements for Optical Reflectance Soil Property Sensors for Korean Paddy Soils , 2008 .