Eurographics/ Ieee-vgtc Symposium on Visualization 2010 a Salience-based Quality Metric for Visualization

Salience detection is a principle mechanism to facilitate visual attention. A good visualization guides the observer's attention to the relevant aspects of the representation. Hence, the distribution of salience over a visualization image is an essential measure of the quality of the visualization. We describe a method for computing such a metric for a visualization image in the context of a given dataset. We show how this technique can be used to analyze a visualization's salience, improve an existing visualization, and choose the best representation from a set of alternatives. The usefulness of this proposed metric is illustrated using examples from information visualization, volume visualization and flow visualization.

[1]  A. J. Grant,et al.  Comparison of three-dimensional visualization techniques for depicting the scala vestibuli and scala tympani of the cochlea by using high-resolution MR imaging. , 1999, AJNR. American journal of neuroradiology.

[2]  Martin Jägersand,et al.  Saliency Maps and Attention Selection in Scale and Spatial Coordinates: An Information Theoretic Approach , 1995, ICCV.

[3]  David W. Jacobs,et al.  Mesh saliency , 2005, SIGGRAPH 2005.

[4]  Pietro Perona,et al.  Selective visual attention enables learning and recognition of multiple objects in cluttered scenes , 2005, Comput. Vis. Image Underst..

[5]  Wei Chen,et al.  Perception-Based Transparency Optimization for Direct Volume Rendering , 2009, IEEE Transactions on Visualization and Computer Graphics.

[6]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[7]  Pieter R. Roelfsema,et al.  Object-based attention in the primary visual cortex of the macaque monkey , 1998, Nature.

[8]  Matthew O. Ward,et al.  XmdvtoolQ:: quality-aware interactive data exploration , 2007, SIGMOD '07.

[9]  David S. Ebert,et al.  Volume illustration: non-photorealistic rendering of volume models , 2000 .

[10]  Jarke J. van Wijk,et al.  The value of visualization , 2005, VIS 05. IEEE Visualization, 2005..

[11]  David H. Laidlaw,et al.  Online Submission ID: vis-1157 Comparing 3D Vector Field Visualization Methods: A User Study , 2022 .

[12]  Victoria Interrante,et al.  User Studies: Why, How, and When? , 2003, IEEE Computer Graphics and Applications.

[13]  Gerik Scheuermann,et al.  Multifield visualization using local statistical complexity , 2007, IEEE Transactions on Visualization and Computer Graphics.

[14]  John Collomosse,et al.  Painterly rendering using image salience , 2002, Proceedings 20th Eurographics UK Conference.

[15]  David W. Jacobs,et al.  Mesh saliency , 2005, ACM Trans. Graph..

[16]  Hans-Georg Pagendarm,et al.  Feature detection from vector quantities in a numerically simulated hypersonic flow field in combination with experimental flow visualization , 1994, Proceedings Visualization '94.

[17]  Dominikus Baur,et al.  Measuring Aesthetics for Information Visualization , 2009, 2009 13th International Conference Information Visualisation.

[18]  Matthew O. Ward,et al.  Measuring Data Abstraction Quality in Multiresolution Visualizations , 2006, IEEE Transactions on Visualization and Computer Graphics.

[19]  David S. Ebert,et al.  Volume Illustration: Nonphotorealistic Rendering of Volume Models , 2001, IEEE Trans. Vis. Comput. Graph..

[20]  Laurent Itti,et al.  Memory, eye position and computed saliency , 2010 .

[21]  Chaomei Chen Measuring the quality of network visualization , 2005, Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL '05).

[22]  Chris Henze Feature detection in linked derived spaces , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[23]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[24]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[25]  J. Edward Swan,et al.  Results of a User Study on 2D Hurricane Visualization , 2008, Comput. Graph. Forum.

[26]  Amitabh Varshney,et al.  Saliency-guided Enhancement for Volume Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[27]  Eduard Gröller,et al.  Salient Representation of Volume Data , 2001, VisSym.

[28]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[29]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[30]  Christof Koch,et al.  Control of Selective Visual Attention: Modeling the Where Pathway , 1995, NIPS.

[31]  Robert Michael Kirby,et al.  Comparing 2D vector field visualization methods: a user study , 2005, IEEE Transactions on Visualization and Computer Graphics.

[32]  C. Koch,et al.  Target detection using saliency-based attention , 2000 .

[33]  Robert J. Moorhead,et al.  A User Study to Compare Four Uncertainty Visualization Methods for 1D and 2D Datasets , 2009, IEEE Transactions on Visualization and Computer Graphics.

[34]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[35]  J. Duncan Selective attention and the organization of visual information. , 1984, Journal of experimental psychology. General.

[36]  Pierre Baldi,et al.  Attention: Bits Versus Wows , 2005 .