A 2D-3D visualization support for human-centered rule mining

On account of the enormous amounts of rules that can be produced by data mining algorithms, knowledge post-processing is a difficult stage in an association rule discovery process. In order to find relevant knowledge, the user needs to rummage through the rules. To make this task easier, we propose a new interactive mining methodology based on well adapted dynamic visual representations. It allows the user to drive the discovery process by focusing his/her attention on limited subsets of rules. We have implemented our methodology with two complementary 2D and 3D visualization supports. These implementations exploit the user's focus to guide the generation of the rules by means of a specific constraint-based rule-mining algorithm.

[1]  Fabrice Guillet,et al.  Quality Measures in Data Mining (Studies in Computational Intelligence) , 2007 .

[2]  Helen C. Purchase,et al.  Which Aesthetic has the Greatest Effect on Human Understanding? , 1997, GD.

[3]  Markus H. Gross,et al.  Visualization of directed associations in e-commerce transaction data , 2001, VisSym.

[4]  Chaomei Chen,et al.  Information Visualization: Beyond the Horizon , 2006 .

[5]  Fabrice Guillet,et al.  A User-Driven Process for Mining Association Rules , 2000, PKDD.

[6]  Sudha Ram,et al.  Proceedings of the 1997 ACM SIGMOD international conference on Management of data , 1997, ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.

[7]  Pascale Kuntz,et al.  Dynamic Graph Drawing with a Hybridized Genetic Algorithm , 2004 .

[8]  Ulrich Güntzer,et al.  Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.

[9]  Inderpal Bhandari,et al.  Attribute focusing: machine-assisted knowledge discovery applied to software production process control , 1993 .

[10]  Wei Wang,et al.  DMQL: A Data Mining Query Language for Relational Databases , 2007 .

[11]  Fabrice Guillet,et al.  A user-driven and quality-oriented visualization for mining association rules , 2003, Third IEEE International Conference on Data Mining.

[12]  Jean-Pierre Barthélemy,et al.  A model of selection by aspects , 1992 .

[13]  Henry Montgomery,et al.  Decision Rules and the Search for a Dominance Structure: Towards a Process Model of Decision Making* , 1983 .

[14]  William Frawley,et al.  Knowledge Discovery in Databases , 1991 .

[15]  I. Spence Visual psychophysics of simple graphical elements. , 1990, Journal of experimental psychology. Human perception and performance.

[16]  O. Svenson,et al.  Analysing and aiding decision processes , 1983 .

[17]  Manojit Sarkar,et al.  Graphical fisheye views of graphs , 1992, CHI.

[18]  Gang Liu,et al.  DBMiner: a system for data mining in relational databases and data warehouses , 1997, CASCON.

[19]  Hamparsum Bozdogan,et al.  Statistical Data Mining and Knowledge Discovery , 2004 .

[20]  Fabrice Guillet,et al.  Quality Measures in Data Mining , 2009, Studies in Computational Intelligence.

[21]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[22]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[23]  Régis Gras,et al.  Implication Intensity: From the Basic Statistical Definition to the Entropic Version , 2003 .

[24]  Pak Chung Wong,et al.  Visualizing association rules for text mining , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[25]  John F. Roddick,et al.  Experiences in Building a Tool for Navigating Association Rule Result Sets , 2004, ACSW.

[26]  Issei Fujishiro,et al.  The elements of graphing data , 2005, The Visual Computer.

[27]  Tomasz Imielinski,et al.  MSQL: A Query Language for Database Mining , 1999, Data Mining and Knowledge Discovery.

[28]  Sushil Jajodia,et al.  Proceedings of the 1993 ACM SIGMOD international conference on Management of data , 1993, SIGMOD 1993.

[29]  Qin Ding,et al.  Mining Association Rules from XML Data , 2008 .

[30]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[31]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[32]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[33]  W. Cleveland,et al.  Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods , 1984 .

[34]  Heikki Mannila,et al.  Finding interesting rules from large sets of discovered association rules , 1994, CIKM '94.

[35]  Antony Unwin,et al.  The TwoKey Plot for Multiple Association Rules Control , 2001, PKDD.

[36]  John F. Roddick,et al.  Visualisation of Temporal Interval Association Rules , 2000, IDEAL.

[37]  Yiming Ma,et al.  Web for data mining: organizing and interpreting the discovered rules using the Web , 2000, SKDD.

[38]  Wray L. Buntine,et al.  Graphical models for discovering knowledge , 1996, KDD 1996.

[39]  Régis Gras,et al.  L'implication statistique : nouvelle méthode exploratoire de données : applications à la didactique , 1996 .

[40]  Heikki Mannila,et al.  A database perspective on knowledge discovery , 1996, CACM.

[41]  C. Melody Carswell,et al.  Graphing in depth: Perspectives on the use of three-dimensional graphs to represent lower-dimensional data. , 1991 .

[42]  Jean-François Boulicaut,et al.  A Comparison between Query Languages for the Extraction of Association Rules , 2002, DaWaK.

[43]  Hans-Peter Kriegel,et al.  Visualization Techniques for Mining Large Databases: A Comparison , 1996, IEEE Trans. Knowl. Data Eng..

[44]  Henri Briand,et al.  Dynamic rule graph drawing by genetic search , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[45]  Ronald J. Brachman,et al.  The Process of Knowledge Discovery in Databases , 1996, Advances in Knowledge Discovery and Data Mining.

[46]  Jean-François Boulicaut,et al.  Optimization of association rule mining queries , 2002, Intell. Data Anal..

[47]  Mary Czerwinski,et al.  Data mountain: using spatial memory for document management , 1998, UIST '98.

[48]  Download Book,et al.  Information Visualization in Data Mining and Knowledge Discovery , 2001 .

[49]  Willi Klösgen,et al.  A Support System for Interpreting Statistical Data , 1991, Knowledge Discovery in Databases.

[50]  Gregory Piatetsky-Shapiro,et al.  Knowledge Discovery in Databases: An Overview , 1992, AI Mag..

[51]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[52]  Gediminas Adomavicius,et al.  Handling very large numbers of association rules in the analysis of microarray data , 2002, KDD.

[53]  Heike Hofmann,et al.  Visual Comparison of Association Rules , 2001, Comput. Stat..

[54]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[55]  B. Marx The Visual Display of Quantitative Information , 1985 .

[56]  H. Simon,et al.  Models of Thought , 1979 .

[57]  Heike Hofmann,et al.  Visualizing association rules with interactive mosaic plots , 2000, KDD '00.

[58]  Andreas Wierse,et al.  Information Visualization in Data Mining and Knowledge Discovery , 2001 .

[59]  Ramana Rao,et al.  A focus+context technique based on hyperbolic geometry for visualizing large hierarchies , 1995, CHI '95.

[60]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[61]  Laks V. S. Lakshmanan,et al.  Exploratory mining and pruning optimizations of constrained associations rules , 1998, SIGMOD '98.

[62]  Giuseppe Psaila,et al.  An Extension to SQL for Mining Association Rules , 1998, Data Mining and Knowledge Discovery.

[63]  Georges G. Grinstein Harnessing the Human in Knowledge Discovery , 1996, KDD.