Evolvable Self-Replicating Molecules in an Artificial Chemistry

This paper gives details of Squirm3, a new artificial environment based on a simple physics and chemistry that supports self-replicating molecules somewhat similar to DNA. The self-replicators emerge spontaneously from a random soup given the right conditions. Interactions between the replicators can result in mutated versions that can outperform their parents. We show how artificial chemistries such as this one can be implemented as a cellular automaton. We concur with Dittrich, Ziegler, and Banzhaf that artificial chemistries are a good medium in which to study early evolution.

[1]  Gianluca Tempesti,et al.  A New Self-Reproducing Cellular Automaton Capable of Construction and Computation , 1995, ECAL.

[2]  Tim Taylor,et al.  On Self-Reproduction and Evolvability , 1999, ECAL.

[3]  Peter D. Turney,et al.  JohnnyVon: Self-Replicating Automata in Continuous Two-Dimensional Space , 2002, ArXiv.

[4]  Thomas S. Ray,et al.  An Approach to the Synthesis of Life , 1991 .

[5]  Julius Rebek,et al.  Synthetic self-replicating molecules , 1994 .

[6]  Pier Luigi Luisi,et al.  Enzymatic RNA Synthesis in Self-Reproducing Vesicles: An Approach to the Construction of a Minimal Synthetic Cell , 1994 .

[7]  Günter von Kiedrowski,et al.  A Self‐Replicating Hexadeoxynucleotide , 1986 .

[8]  D. Bartel,et al.  Synthesizing life , 2001, Nature.

[9]  Wolfgang Banzhaf,et al.  Artificial ChemistriesA Review , 2001, Artificial Life.

[10]  R V Williams,et al.  Genetic Takeover and the Mineral Origins of Life , 1983 .

[11]  G. F. Joyce,et al.  Continuous in vitro evolution of catalytic function. , 1997, Science.

[12]  Takashi Ikegami,et al.  Artificial Chemistry: Computational Studies on the Emergence of Self-Reproducing Units , 2001, ECAL.

[13]  Takashi Ikegami,et al.  Model of Self-Replicating Cell Capable of Self-Maintenance , 1999, ECAL.

[14]  Tim Taylor,et al.  Creativity in evolution: individuals, interactions, and environments , 2001 .

[15]  Andrew N. Pargellis,et al.  Digital Life Behavior in the Amoeba World , 2000, Artificial Life.

[16]  K. Downing Modular designer chemistries for artificial life , 2001 .

[17]  Timothy J. Taylor,et al.  From artificial evolution to artificial life , 1999 .

[18]  Martin Nilsson,et al.  Ansatz for Dynamical Hierarchies , 2002, Artificial Life.

[19]  T. Ikegami,et al.  Self-maintenance and self-reproduction in an abstract cell model. , 2000, Journal of theoretical biology.

[20]  C. Langton Self-reproduction in cellular automata , 1984 .

[21]  G. F. Joyce The antiquity of RNA-based evolution , 2002, Nature.

[22]  Hiroki Sayama,et al.  A New Structurally Dissolvable Self-Reproducing Loop Evolving in a Simple Cellular Automata Space , 1999, Artificial Life.

[23]  Steen Rasmussen,et al.  Dynamics and Simulation of Micellar Self-Reproduction , 2000 .

[24]  B. Ganem RNA world , 1987, Nature.

[25]  Barry McMullin,et al.  John von Neumann and the Evolutionary Growth of Complexity: Looking Backward, Looking Forward , 2000, Artificial Life.

[26]  J A Reggia,et al.  Simple Systems That Exhibit Self-Directed Replication , 1993, Science.

[27]  A. N. Pargellis,et al.  The evolution of self-replicating computer organisms , 1996 .

[28]  John S. McCaskill,et al.  Open Problems in Artificial Life , 2000, Artificial Life.

[29]  C. Titus Brown,et al.  Evolutionary Learning in the 2D Artificial Life System "Avida" , 1994, adap-org/9405003.

[30]  J. Reggia,et al.  Problem solving during artificial selection of self-replicating loops , 1998 .

[31]  W. Gilbert Origin of life: The RNA world , 1986, Nature.

[32]  E. Szathmáry Origins of life: The first two billion years , 1997, Nature.

[33]  Moshe Sipper,et al.  Design, Observation, Surprise! A Test of Emergence , 1999, Artificial Life.

[34]  D. Lancet,et al.  Composing life , 2000, EMBO reports.

[35]  Barry McMullin,et al.  John von Neumann and the Evolutionary Growth of Complexity: Looking Backwards, Looking Forwards.. , 2004 .

[36]  Hiroki Sayama Introduction of structural dissolution into Langton's self-reproducing loop , 1998 .

[37]  Carlo C. Maley,et al.  Four steps toward open-ended evolution , 1999 .

[38]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[39]  Charles E. Taylor,et al.  Artificial Life II , 1991 .

[40]  James A. Reggia,et al.  Self-replicating structures in a cellular automata space , 1997 .

[41]  P. L. Hall Seven Clues to the Origin of Life , 1985 .

[42]  Moshe Sipper,et al.  Toward a viable, self-reproducing universal computer , 1996 .

[43]  D. Bartel,et al.  Synthesizing life : Paths to unforeseeable science & technology , 2001 .

[44]  John Byl,et al.  Self-Reproduction in Small Cellular Au-tomata , 1989 .

[45]  Umberto Pesavento,et al.  An Implementation of von Neumann's Self-Reproducing Machine , 1995, Artificial Life.