3D Reconstruction of Interplanetary Scintillation (IPS) Remote-Sensing Data: Global Solar Wind Boundaries for Driving 3D-MHD Models

The University of California, San Diego, time-dependent analyses of the heliosphere provide three-dimensional (3D) reconstructions of solar wind velocities and densities from observations of interplanetary scintillation (IPS). Using data from the Solar-Terrestrial Environment Laboratory, Japan, these reconstructions provide a real-time prediction of the global solar-wind density and velocity throughout the whole heliosphere with a temporal cadence of about one day (ips.ucsd.edu). Updates to this modeling effort continue: in the present article, near-Sun results extracted from the time-dependent 3D reconstruction are used as inner boundary conditions to drive 3D-MHD models (e.g. ENLIL and H3D-MHD). This allows us to explore the differences between the IPS kinematic-model data-fitting procedure and current 3D-MHD modeling techniques. The differences in these techniques provide interesting insights into the physical principles governing the expulsion of coronal mass ejections (CMEs). Here we detail for the first time several specific CMEs and an induced shock that occurred in September 2011 that demonstrate some of the issues resulting from these analyses.

[1]  A. Buffington,et al.  Three-dimensional reconstruction of heliospheric structure using iterative tomography: A review , 2011 .

[2]  Mario M. Bisi,et al.  Combined STELab, EISCAT, ESR, and MERLIN IPS observations of the solar wind , 2007, SPIE Optical Engineering + Applications.

[3]  J. Gonzalez-Esparza,et al.  Observations of Interplanetary Scintillation (IPS) Using the Mexican Array Radio Telescope (MEXART) , 2010 .

[4]  M. Kojima,et al.  Solar cycle evolution of solar wind speed structure between 1973 and 1985 observed with the interplanetary scintillation method , 1987 .

[5]  Dusan Odstrcil,et al.  Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes , 2004 .

[6]  L. Burlaga,et al.  Compound streams, magnetic clouds, and major geomagnetic storms , 1987 .

[7]  D. Mccomas,et al.  A high‐latitude interplanetary magnetic field enhancement at Ulysses , 2002 .

[8]  A. Buffington,et al.  Low-Resolution STELab IPS 3D Reconstructions of the Whole Heliosphere Interval and Comparison with in-Ecliptic Solar Wind Measurements from STEREO and Wind Instrumentation , 2009 .

[9]  J. T. Hoeksema,et al.  Prediction of the interplanetary magnetic field strength , 1995 .

[10]  Bernard V. Jackson,et al.  Inclusion of Real-Time In-Situ Measurements into the UCSD Time-Dependent Tomography and Its Use as a Forecast Algorithm , 2013 .

[11]  J. Linker,et al.  Dynamical evolution of the inner heliosphere approaching solar activity maximum: interpreting Ulysses observations using a global MHD model , 2003 .

[12]  T. Ohmi,et al.  Time‐dependent tomography of hemispheric features using interplanetary scintillation (IPS) remote‐sensing observations , 2003 .

[13]  A. Hewish,et al.  The sources of large-scale heliospheric disturbances , 1986 .

[14]  I. Richardson Geomagnetic activity during the rising phase of solar cycle 24 , 2013 .

[15]  Dusan Odstrcil,et al.  Numerical simulation of the 12 May 1997 interplanetary CME event , 2004 .

[16]  M. Dryer,et al.  Simulated Solar Mass Ejection Imager and “Solar Terrestrial Relations Observatory‐like” views of the solar wind following the solar flares of 27–29 May 2003 , 2008 .

[17]  Tucson,et al.  ULTRAVIOLET SPECTROSCOPY OF TYPE IIB SUPERNOVAE: DIVERSITY AND THE IMPACT OF CIRCUMSTELLAR MATERIAL , 2014, 1412.4767.

[18]  Bernard V. Jackson,et al.  Heliospheric tomography: an algorithm for the reconstruction of the 3D solar wind from remote sensing observations , 2004, SPIE Optics + Photonics.

[19]  Jon A. Linker,et al.  Disruption of Coronal Magnetic Field Arcades , 1994 .

[20]  D. Odstrcil,et al.  Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt , 1999 .

[21]  M. Tokumaru Three-dimensional exploration of the solar wind using observations of interplanetary scintillation , 2013, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[22]  J. Linker,et al.  Global MHD Modeling of the Solar Corona and Inner Heliosphere for the Whole Heliosphere Interval , 2011 .

[23]  C. Arge,et al.  Improvement in the prediction of solar wind conditions using near‐real time solar magnetic field updates , 2000 .

[24]  S. Wu,et al.  Global simulation of extremely fast coronal mass ejection on 23 July 2012 , 2014 .

[25]  S. Wu,et al.  A HYBRID SOLAR WIND MODEL OF THE CESE+HLL METHOD WITH A YIN–YANG OVERSET GRID AND AN AMR GRID , 2011, The Astrophysical Journal.

[26]  L. Burlaga,et al.  MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud : An analysis of the January 1997 Sun-Earth connection event , 1999 .

[27]  W. Liu,et al.  Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model , 2002 .

[28]  C. Eyles,et al.  Long-Term Evolution of the Photometric Calibration of the STEREO Heliospheric Imagers: I. HI-1 , 2012 .

[29]  Bernard V. Jackson,et al.  The Solar Mass-Ejection Imager (SMEI) Mission , 2003 .

[30]  P. K. Manoharan,et al.  3-D reconstructions of the early-November 2004 CDAW geomagnetic storms: analysis of Ooty IPS speed and density data , 2009 .

[31]  C. Russell,et al.  Perpendicular flow deviation in a magnetized counter-streaming plasma , 2012 .

[32]  Bernard V. Jackson,et al.  Heliospheric tomography using interplanetary scintillation observations: 2. Latitude and heliocentric distance dependence of solar wind structure at 0.1–1 AU , 1998 .

[33]  M. Dryer,et al.  A global 3-D simulation of interplanetary dynamics in June 1991 , 1995 .

[34]  A. Hewish,et al.  Interplanetary Scintillation of Small Diameter Radio Sources , 1964, Nature.

[35]  Bernard V. Jackson,et al.  Time-dependent tomography of heliospheric features using the three-dimensional reconstruction techniques developed for the solar mass ejection imager (SMEI) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[36]  M. Tokumaru,et al.  A newly developed UHF radiotelescope for interplanetary scintillation observations: Solar Wind Imaging Facility , 2011 .

[38]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO) , 1995 .

[39]  Andrew Wilson Solar variability as an input to the Earth's environment , 2003 .

[40]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[41]  Keiji Hayashi,et al.  Fast solar wind after the rapid acceleration , 2004 .

[42]  N. Pogorelov,et al.  MHD heliosphere with boundary conditions from a tomographic reconstruction using interplanetary scintillation data , 2014 .

[43]  Bernard V. Jackson,et al.  The Solar Mass Ejection Imager (Smei) , 2003 .

[44]  C. Eyles,et al.  Calibrating the Pointing and Optical Parameters of the STEREO Heliospheric Imagers , 2009 .

[45]  J. Davies,et al.  The Heliospheric Imagers Onboard the STEREO Mission , 2009 .

[46]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2008 .

[47]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO) , 1995 .

[48]  S. Wu,et al.  Global three‐dimensional simulation of the interplanetary evolution of the observed geoeffective coronal mass ejection during the epoch 1–4 August 2010 , 2011 .

[49]  B. Jackson,et al.  Heliospheric tomography using interplanetary scintillation observations. 1. Combined Nagoya and Cambridge data , 1998 .

[50]  A. T. Young INTERPRETATION OF INTERPLANETARY SCINTILLATIONS. , 1971 .

[51]  B. Jackson,et al.  Three-Dimensional (3-D) Reconstructions of EISCAT IPS Velocity Data in the Declining Phase of Solar Cycle 23 , 2010 .

[52]  W. Coles,et al.  Microturbulence in solar wind streams , 1980 .

[53]  D. Odstrcil Modeling 3-D solar wind structure , 2003 .

[54]  I. Cairns,et al.  Type II solar radio bursts predicted by 3‐D MHD CME and kinetic radio emission simulations , 2013 .

[55]  Z. Houminer,et al.  Corotating Plasma Streams revealed by Interplanetary Scintillation , 1971 .

[56]  A. Wilson,et al.  Solar variability: from core to outer frontiers , 2002 .

[57]  J. Phillips,et al.  Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections , 1991 .

[58]  M. Tokumaru,et al.  Toroidal-shaped interplanetary disturbance associated with the halo coronal mass ejection event on 14 July 2000 , 2003 .

[59]  Bernard V. Jackson,et al.  Comparative Analyses of the CSSS Calculation in the UCSD Tomographic Solar Observations , 2005 .

[60]  N. Lugaz,et al.  Numerical Modeling of Interplanetary Coronal Mass Ejections and Comparison with Heliospheric Images , 2010, 1008.5394.

[61]  S. Wu,et al.  THREE-DIMENSIONAL SOLAR WIND MODELING FROM THE SUN TO EARTH BY A SIP-CESE MHD MODEL WITH A SIX-COMPONENT GRID , 2010 .

[62]  J. Linker,et al.  An empirically‐driven global MHD model of the solar corona and inner heliosphere , 2001 .

[63]  D. D. Zeeuw,et al.  Global three‐dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere , 2000 .

[64]  M. Tokumaru,et al.  Kinematic Properties of Slow ICMEs and an Interpretation of a Modified Drag Equation for Fast and Moderate ICMEs , 2014, 1401.1724.

[65]  M. Tokumaru,et al.  Radial Speed Evolution of Interplanetary Coronal Mass Ejections During Solar Cycle 23 , 2013, 1303.5154.

[66]  A. Buffington,et al.  Inclusion of In-Situ Velocity Measurements into the UCSD Time-Dependent Tomography to Constrain and Better-Forecast Remote-Sensing Observations , 2010 .

[67]  D. Mccomas,et al.  Strong interplanetary field enhancements at Ulysses—evidence of dust trails' interaction with the solar wind? , 2003 .

[68]  N. Sheeley,et al.  Solar wind speed and coronal flux-tube expansion , 1990 .

[69]  S. Wu,et al.  Evolution of fast and slow shock interactions in the inner heliosphere , 2004 .

[70]  J. Linker,et al.  Merging of coronal and heliospheric numerical two‐dimensional MHD models , 2002 .

[71]  J. Davies,et al.  First Imaging of Coronal Mass Ejections in the Heliosphere Viewed from Outside the Sun – Earth Line , 2008 .

[72]  P. K. Manoharan Ooty Interplanetary Scintillation – Remote-Sensing Observations and Analysis of Coronal Mass Ejections in the Heliosphere , 2010 .

[73]  M. M. Bisi,et al.  Interaction between coronal mass ejections and the solar wind , 2007 .

[74]  A. Hewish,et al.  Structure and evolution of compound streams at ≤1 AU , 1991 .

[75]  A. Buffington,et al.  A DETERMINATION OF THE NORTH–SOUTH HELIOSPHERIC MAGNETIC FIELD COMPONENT FROM INNER CORONA CLOSED-LOOP PROPAGATION , 2015 .

[76]  A. Buffington,et al.  A Heliospheric Imager for Deep Space: Lessons Learned from Helios, SMEI, and STEREO , 2010 .

[77]  Bernard V. Jackson,et al.  Three-Dimensional Tomography of Interplanetary Disturbances , 2004 .