Polar Positioning of Phase-Separated Liquid Compartments in Cells Regulated by an mRNA Competition Mechanism

P granules are non-membrane-bound RNA-protein compartments that are involved in germline development in C. elegans. They are liquids that condense at one end of the embryo by localized phase separation, driven by gradients of polarity proteins such as the mRNA-binding protein MEX-5. To probe how polarity proteins regulate phase separation, we combined biochemistry and theoretical modeling. We reconstitute P granule-like droplets in vitro using a single protein PGL-3. By combining in vitro reconstitution with measurements of intracellular concentrations, we show that competition between PGL-3 and MEX-5 for mRNA can regulate the formation of PGL-3 droplets. Using theory, we show that, in a MEX-5 gradient, this mRNA competition mechanism can drive a gradient of P granule assembly with similar spatial and temporal characteristics to P granule assembly in vivo. We conclude that gradients of polarity proteins can position RNP granules during development by using RNA competition to regulate local phase separation.

[1]  M. Mann,et al.  Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells , 2014, Nature Methods.

[2]  Iain W. Mattaj,et al.  Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation , 1999, Nature.

[3]  E. Voronina,et al.  The diverse functions of germline P‐granules in Caenorhabditis elegans , 2013, Molecular reproduction and development.

[4]  Brian M. Farley,et al.  RNA target specificity of the embryonic cell fate determinant POS-1. , 2008, RNA.

[5]  Steven N. Hird,et al.  Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation. , 1996, Development.

[6]  Aurélien Rizk,et al.  Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh , 2014, Nature Protocols.

[7]  Karl Mechtler,et al.  BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals , 2008, Nature Methods.

[8]  Christopher M. Gallo,et al.  Cytoplasmic Partitioning of P Granule Components Is Not Required to Specify the Germline in C. elegans , 2010, Science.

[9]  Erik E. Griffin Cytoplasmic localization and asymmetric division in the early embryo of Caenorhabditis elegans , 2015, Wiley interdisciplinary reviews. Developmental biology.

[10]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[11]  Ronald D. Vale,et al.  Phase separation of signaling molecules promotes T cell receptor signal transduction , 2016, Science.

[12]  R. Lin,et al.  MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. , 2000, Molecular cell.

[13]  Paul S. Russo,et al.  Phase Transitions in the Assembly of MultiValent Signaling Proteins , 2016 .

[14]  J. Lieb,et al.  A Transcriptional Lineage of the Early C. elegans Embryo. , 2016, Developmental cell.

[15]  Thea A. Egelhofer,et al.  Germ-Granule Components Prevent Somatic Development in the C. elegans Germline , 2014, Current Biology.

[16]  A. Hyman,et al.  Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation , 2009, Science.

[17]  Marco Y. Hein,et al.  A “Proteomic Ruler” for Protein Copy Number and Concentration Estimation without Spike-in Standards* , 2014, Molecular & Cellular Proteomics.

[18]  Erin M. Langdon,et al.  RNA Controls PolyQ Protein Phase Transitions. , 2015, Molecular cell.

[19]  J. Lieb,et al.  A Transcriptional Lineage of the Early C. elegans Embryo , 2016, bioRxiv.

[20]  K. Kemphues,et al.  Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. , 1996, Current opinion in genetics & development.

[21]  Roy Parker,et al.  Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. , 2015, Molecular cell.

[22]  A. Hyman,et al.  Spatial organization of the cell cytoplasm by position-dependent phase separation. , 2013, Physical review letters.

[23]  Sean X. Sun,et al.  MEX-5 enrichment in the C. elegans early embryo mediated by differential diffusion , 2010, Development.

[24]  Anita Jannasch,et al.  Measuring the complete force field of an optical trap. , 2011, Optics letters.

[25]  E. Betzig,et al.  Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans , 2014, eLife.

[26]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.

[27]  A. Fire,et al.  Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. , 1994, Development.

[28]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[29]  T. C. Evans,et al.  Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development. , 2013, Developmental cell.

[30]  Erik E. Griffin,et al.  Coupling between cytoplasmic concentration gradients through local control of protein mobility in the Caenorhabditis elegans zygote , 2015, Molecular biology of the cell.

[31]  C. Brangwynne,et al.  RNA transcription modulates phase transition-driven nuclear body assembly , 2015, Proceedings of the National Academy of Sciences.

[32]  T. C. B. McLeish,et al.  Polymer Physics , 2009, Encyclopedia of Complexity and Systems Science.

[33]  Nicolas L. Fawzi,et al.  Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II. , 2015, Molecular cell.

[34]  S. Strome,et al.  P granules extend the nuclear pore complex environment in the C. elegans germ line , 2011, The Journal of cell biology.

[35]  A. Kanagaraj,et al.  Phase Separation by Low Complexity Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization , 2015, Cell.

[36]  T. Cech,et al.  RNA seeds higher-order assembly of FUS protein. , 2013, Cell reports.

[37]  Brian M. Farley,et al.  Molecular Basis of RNA Recognition by the Embryonic Polarity Determinant MEX-5* , 2007, Journal of Biological Chemistry.

[38]  Philip J. Cox,et al.  Physical properties of polymers handbook , 1997 .

[39]  J. Lieb,et al.  Asymmetric Transcript Discovery by RNA-seq in C. elegans Blastomeres Identifies neg-1, a Gene Important for Anterior Morphogenesis , 2015, PLoS genetics.

[40]  F. Piano,et al.  In Vivo Interaction Proteomics in Caenorhabditis elegans Embryos Provides New Insights into P Granule Dynamics* , 2016, Molecular & Cellular Proteomics.

[41]  Anthony Barsic,et al.  ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure , 2016, Cell.

[42]  C. Brangwynne,et al.  The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics , 2015, Proceedings of the National Academy of Sciences.

[43]  V. Reinke,et al.  DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells , 2008, Development.

[44]  Erik E. Griffin,et al.  Regulation of the MEX-5 Gradient by a Spatially Segregated Kinase/Phosphatase Cycle , 2011, Cell.

[45]  A. Hyman,et al.  Principles of PAR polarity in Caenorhabditis elegans embryos , 2013, Nature Reviews Molecular Cell Biology.

[46]  S. Strome,et al.  P granule assembly and function in Caenorhabditis elegans germ cells. , 2010, Journal of andrology.

[47]  W. Wood,et al.  PGL-1, a Predicted RNA-Binding Component of Germ Granules, Is Essential for Fertility in C. elegans , 1998, Cell.

[48]  J. Priess,et al.  MEX-5 asymmetry in one-cell C. elegans embryos requires PAR-4- and PAR-1-dependent phosphorylation , 2008, Development.

[49]  R. Lührmann,et al.  Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis , 2010, Nature Structural &Molecular Biology.

[50]  S. Linnarsson,et al.  Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. , 2011, Genome research.

[51]  J. Priess,et al.  Analysis of RNA associated with P granules in germ cells of C. elegans adults. , 2001, Development.

[52]  B. Williams,et al.  From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing , 2014, Genome research.

[53]  T. Cech,et al.  Nucleic acid-binding specificity of human FUS protein , 2015, Nucleic acids research.

[54]  W. Wood,et al.  Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Timothy L Bailey,et al.  Defining the RGG/RG motif. , 2013, Molecular cell.

[56]  J. Priess,et al.  Perinuclear P granules are the principal sites of mRNA export in adult C. elegans germ cells , 2010, Development.

[57]  Ruedi Aebersold,et al.  Dual Specificity Kinase DYRK3 Couples Stress Granule Condensation/Dissolution to mTORC1 Signaling , 2013, Cell.

[58]  A. Sugimoto,et al.  JCB: Report , 2011 .

[59]  Joseph J. Hope,et al.  XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations , 2012, Comput. Phys. Commun..

[60]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[61]  A. Hyman,et al.  Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes , 2011, Proceedings of the National Academy of Sciences.