A review on III–V core–multishell nanowires: growth, properties, and applications

[1]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[2]  G. Abstreiter,et al.  Prismatic quantum heterostructures synthesized on molecular-beam epitaxy GaAs nanowires. , 2008, Small.

[3]  T. Tanaka,et al.  III–V Nanowires on Si Substrate: Selective-Area Growth and Device Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  A. Bertoni,et al.  Cylindrical two-dimensional electron gas in a transverse magnetic field , 2008, 0806.3221.

[5]  Emanuele Uccelli,et al.  Mobility and carrier density in p-type GaAs nanowires measured by transmission Raman spectroscopy. , 2012, Nanoscale.

[6]  A. Bertoni,et al.  Landau levels, edge states, and magnetoconductance in GaAs/AlGaAs core-shell nanowires , 2012, 1211.5444.

[7]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[8]  Jie Xiang,et al.  Gate-modulated thermoelectric power factor of hole gas in Ge-Si core-shell nanowires. , 2013, Nano letters.

[9]  J. Gómez Rivas,et al.  Nanowire antenna emission. , 2012, Nano letters.

[10]  M. Borgström,et al.  A comparative study of absorption in vertically and laterally oriented InP core-shell nanowire photovoltaic devices. , 2015, Nano letters.

[11]  T. Schäpers,et al.  Flux quantization effects in InN nanowires. , 2008, Nano letters.

[12]  Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects , 2009, 0910.5266.

[13]  Ning Wang,et al.  Growth of nanowires , 2008 .

[14]  Huiyun Liu,et al.  III–V nanowires and nanowire optoelectronic devices , 2015 .

[15]  A. Cros Vibrational properties of semiconductor nanowires and nanowire heterostructures: ensembles and single nanowires , 2013 .

[16]  T. Fukui,et al.  GaAs/InGaP Core–Multishell Nanowire-Array-Based Solar Cells , 2013 .

[17]  Young Joon Hong,et al.  Emission color-tuned light-emitting diode microarrays of nonpolar InxGa1–xN/GaN multishell nanotube heterostructures , 2015, Scientific Reports.

[18]  Bozhi Tian,et al.  Coaxial Group Iii#nitride Nanowire Photovoltaics , 2009 .

[19]  L. Latu-Romain,et al.  Silicon carbide based one-dimensional nanostructure growth: towards electronics and biology perspectives , 2014 .

[20]  S. Shimomura,et al.  Metamorphic GaAs/GaAsBi Heterostructured Nanowires. , 2015, Nano letters.

[21]  H. Shtrikman,et al.  High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire. , 2013, Nano letters.

[22]  A. Bertoni,et al.  Electron and hole gas in modulation-doped GaAs/Al{sub 1-x}Ga{sub x}As radial heterojunctions , 2011, 1109.6616.

[23]  Gengfeng Zheng,et al.  Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays , 2006, Science.

[24]  T. Schäpers,et al.  Realization of nanoscaled tubular conductors by means of GaAs/InAs core/shell nanowires , 2013, Nanotechnology.

[25]  Patricia M. Mooney,et al.  Deep donor levels (DX centers) in III‐V semiconductors , 1990 .

[26]  P. Krogstrup,et al.  Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.

[27]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.

[28]  R. LaPierre,et al.  Multi-spectral optical absorption in substrate-free nanowire arrays , 2014 .

[29]  H. Nakano,et al.  Vertically Aligned GaP/GaAs Core-Multishell Nanowires Epitaxially Grown on Si Substrate , 2008 .

[30]  A. Manolescu,et al.  Snaking states on a cylindrical surface in a perpendicular magnetic field , 2013, 1305.5577.

[31]  J. Morante,et al.  Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires , 2009 .

[32]  V. Ramakrishnan,et al.  Micro-Raman investigations of InN-GaN core-shell nanowires on Si (111) substrate , 2013 .

[33]  L. Duchêne,et al.  Quantum dots in the GaAs/AlxGa1−xAs core-shell nanowires: Statistical occurrence as a function of the shell thickness , 2015 .

[34]  M. Ramsteiner,et al.  Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates. , 2014, Nano letters.

[35]  V. Grillo,et al.  Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy , 2008, Nanotechnology.

[36]  P. Yu,et al.  Vertically aligned, catalyst-free InP nanowires grown by metalorganic chemical vapor deposition , 2005 .

[37]  R. Rurali,et al.  Shell-Thickness Controlled Semiconductor-Metal Transition in Si-SiC Core-Shell Nanowires. , 2015, Nano letters.

[38]  R. Rurali Structural, electronic, and transport properties of silicon nanowires , 2009, 0910.2553.

[39]  Anna Fontcuberta i Morral,et al.  Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility. , 2015, Nano letters.

[40]  B. A. Joyce,et al.  Surface-morphology evolution during unstable homoepitaxial growth of GaAs(110) , 1999 .

[41]  Martin Heiss,et al.  Impact of surfaces on the optical properties of GaAs nanowires , 2010 .

[42]  Exciton Footprint of Self-assembled AlGaAs Quantum Dots in Core-Shell Nanowires , 2014, 1406.0163.

[43]  A. Bertoni,et al.  High mobility one- and two-dimensional electron systems in nanowire-based quantum heterostructures. , 2013, Nano letters.

[44]  S. Ban,et al.  Effects of ternary mixed crystal and size on optical phonons in wurtzite nitride core-shell nanowires , 2014 .

[45]  J. Etheridge,et al.  Enhanced minority carrier lifetimes in GaAs/AlGaAs core-shell nanowires through shell growth optimization. , 2013, Nano letters.

[46]  Volker Schmidt,et al.  Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties , 2009, Advanced materials.

[47]  M. Capizzi,et al.  Determination of exciton reduced mass and gyromagnetic factor of wurtzite (InGa)As nanowires by photoluminescence spectroscopy under high magnetic fields. , 2013, ACS nano.

[48]  G. Abstreiter,et al.  Free standing modulation doped core–shell GaAs/AlGaAs hetero‐nanowires , 2011 .

[49]  Lloyd M. Smith,et al.  Thermal Delocalization of Excitons in GaAs/AlGaAs Quantum Well Tube Nanowires. , 2016, Nano letters.

[50]  Min Bai,et al.  Core–shell nanowire diode based on strain‐engineered bandgap , 2015 .

[51]  Stefano Ossicini,et al.  Silicon-germanium nanowires: chemistry and physics in play, from basic principles to advanced applications. , 2014, Chemical reviews.

[52]  W. Wiegmann,et al.  Impurity trapping, interface structure, and luminescence of GaAs quantum wells grown by molecular beam epitaxy , 1984 .

[53]  M. Capizzi,et al.  Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires. , 2015, ACS nano.

[54]  G. Abstreiter,et al.  Inelastic Light Scattering from a Quasi-Two-Dimensional Electron System in GaAs-Al x Ga 1-x As Heterojunctions , 1979 .

[55]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[56]  S. Bellucci,et al.  Landau levels and edge states in a cylindrical two-dimensional electron gas: A semiclassical approach , 2010 .

[57]  M. Pala,et al.  Spin-orbit coupling and phase coherence in InAs nanowires , 2010, 1011.1556.

[58]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[59]  L. Samuelson,et al.  Growth and Optical Properties of Strained GaAs−GaxIn1-xP Core−Shell Nanowires , 2005 .

[60]  G. Tütüncüoğlu,et al.  III–V nanowire arrays: growth and light interaction , 2014, Nanotechnology.

[61]  D. A. Kleinman,et al.  Luminescence studies of optically pumped quantum wells in GaAs- Al x Ga 1 − x As multilayer structures , 1980 .

[62]  I. Buyanova,et al.  Raman spectroscopy of GaP/GaNP core/shell nanowires , 2014 .

[63]  Peidong Yang,et al.  Semiconductor nanowire: what's next? , 2010, Nano letters.

[64]  Study of the initial nucleation and growth of catalyst-free InAs and Ge nanowires , 2007 .

[65]  C. Chang-Hasnain,et al.  Valence band splitting in wurtzite InGaAs nanoneedles studied by photoluminescence excitation spectroscopy. , 2014, ACS nano.

[66]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[67]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[68]  Huiyun Liu,et al.  Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon , 2013, Nature Communications.

[69]  T. Schäpers,et al.  Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires , 2014 .

[70]  Changxin Chen,et al.  Growth and large-scale assembly of InAs/InP core/shell nanowire: effect of shell thickness on electrical characteristics , 2013, Nanotechnology.

[71]  Lars Samuelson,et al.  Spatially resolved Hall effect measurement in a single semiconductor nanowire. , 2012, Nature nanotechnology.

[72]  Lars Samuelson,et al.  Epitaxial III-V nanowires on silicon , 2004 .

[73]  D. Lucot,et al.  Quasi one-dimensional transport in single GaAs/AlGaAs core-shell nanowires , 2011, 1101.0421.

[74]  Lars Samuelson,et al.  Growth Mechanism of Self-Catalyzed Group III−V Nanowires , 2010, Nano letters.

[75]  D. Thompson,et al.  GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.

[76]  Oliver Hayden,et al.  Semiconductor nanowire devices , 2008 .

[77]  T. Schäpers,et al.  Electronic phase coherence in InAs nanowires. , 2011, Nano letters.

[78]  Ji-Hyeon Park,et al.  Coaxial In(x)Ga(1-x)N/GaN multiple quantum well nanowire arrays on Si(111) substrate for high-performance light-emitting diodes. , 2013, Nano letters.

[79]  R. LaPierre,et al.  A growth interruption technique for stacking fault-free nanowire superlattices , 2009, Nanotechnology.

[80]  A. Bertoni,et al.  Aharonov-Bohm oscillations and electron gas transitions in hexagonal core-shell nanowires with an axial magnetic field , 2015, 1501.06694.

[81]  H. Jiang,et al.  Catalyst-free growth of In(As)P nanowires on silicon , 2006 .

[82]  Gerhard Abstreiter,et al.  Enhanced luminescence properties of InAs-InAsP core-shell nanowires. , 2013, Nano letters.

[83]  B. Daudin,et al.  From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer , 2007 .

[84]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[85]  Mats-Erik Pistol,et al.  Probing strain in bent semiconductor nanowires with Raman spectroscopy. , 2010, Nano letters.

[86]  Takashi Fukui,et al.  Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates , 2004 .

[87]  Sven Barth,et al.  Synthesis and applications of one-dimensional semiconductors , 2010 .

[88]  Chennupati Jagadish,et al.  Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers. , 2016, Nano letters.

[89]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[90]  A. Bertoni,et al.  Magnetic states in prismatic core multishell nanowires. , 2009, Nano letters.

[91]  Jeunghee Park,et al.  Quantum interference in radial heterostructure nanowires. , 2008, Nano letters (Print).

[92]  Chao-Wei Wu,et al.  Thermoelectric characteristic of the rough InN/GaN core-shell nanowires , 2014 .

[93]  L. Chico,et al.  Polar optical phonons in core–shell semiconductor nanowires , 2013, 1306.5810.

[94]  G. Abstreiter,et al.  E(1)(A) electronic band gap in wurtzite InAs nanowires studied by resonant Raman scattering. , 2013, Nano letters.

[95]  Lars Samuelson,et al.  Au-free epitaxial growth of InAs nanowires. , 2006, Nano letters.

[96]  Uncoupled optical phonons in core/shell GaAs/GaP nanowires: Strain effects , 2012 .

[97]  T. Fukui,et al.  Indium Phosphide Core–Shell Nanowire Array Solar Cells with Lattice-Mismatched Window Layer , 2013 .

[98]  Gerhard Abstreiter,et al.  Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy , 2008 .

[99]  Aaron Gin,et al.  Advanced core/multishell germanium/silicon nanowire heterostructures: Morphology and transport , 2011 .

[100]  T. Schäpers,et al.  Giant magnetoconductance oscillations in hybrid superconductor-semiconductor core/shell nanowire devices. , 2014, Nano letters.

[101]  Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires , 2013, 1305.3832.

[102]  Chuanbin Mao,et al.  Protein-Mediated Nanocrystal Assembly for Flash Memory Fabrication , 2007, IEEE Transactions on Electron Devices.

[103]  G. Abstreiter,et al.  Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control , 2016 .

[104]  E. Kapon,et al.  Conductance Quantization in V-Groove Quantum Wires , 1999 .

[105]  A. Bertoni,et al.  Symmetries in the collective excitations of an electron gas in core-shell nanowires , 2014, 1402.6116.

[106]  Charles M. Lieber,et al.  Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. , 2006, Nano letters.

[107]  Magnetoconductance oscillations in quasiballistic multimode nanowires , 2006, cond-mat/0608468.

[108]  S. Rubini,et al.  Photoluminescence of GaAs nanowires at an energy larger than the zincblende band-gap: dependence on growth parameters , 2015 .

[109]  Duber M. Murillo,et al.  Nanowire Arrays as Cell Force Sensors To Investigate Adhesin-Enhanced Holdfast of Single Cell Bacteria and Biofilm Stability. , 2016, Nano letters.

[110]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[111]  Magnetophotoluminescence in GaAs/AlAs core-multishell nanowires: A theoretical investigation , 2015, 1509.06168.

[112]  H. L. Stormer,et al.  Nobel Lecture: The fractional quantum Hall effect , 1999 .

[113]  L. Lauhon,et al.  Alloy Fluctuations Act as Quantum Dot-like Emitters in GaAs-AlGaAs Core-Shell Nanowires. , 2015, ACS nano.

[114]  Jiangtian Li,et al.  Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array , 2013, Nature Communications.

[115]  C. Reynolds,et al.  Effects of Annealing on GaAs/GaAsSbN/GaAs Core-Multi-shell Nanowires , 2016, Nanoscale Research Letters.

[116]  E. Bakkers,et al.  Position-controlled epitaxial III–V nanowires on silicon , 2006 .

[117]  F. Patolsky,et al.  A Route to High‐Quality Crystalline Coaxial Core/Multishell Ge@Si(GeSi)n and Si@(GeSi)n Nanowire Heterostructures , 2010, Advanced materials.

[118]  J. Baugh,et al.  Magnetoconductance signatures of subband structure in semiconductor nanowires , 2013, 1305.5552.

[119]  A. Bertoni,et al.  Unintentional high-density p-type modulation doping of a GaAs/AlAs core-multishell nanowire. , 2014, Nano letters.

[120]  D. Poulikakos,et al.  Thermal conductivity reduction in core-shell nanowires , 2011 .

[121]  K. Dick,et al.  Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays. , 2014, Nano letters.

[122]  P. Petroff,et al.  Carrier transport in self-organized InAs/GaAs quantum-dot structures studied by single-dot spectroscopy , 2006 .

[123]  George T. Wang,et al.  Polarization fields in III-nitride nanowire devices , 2010, Nanotechnology.

[124]  R. T. Phillips,et al.  Three-dimensional magneto-photoluminescence as a probe of the electronic properties of crystal-phase quantum disks in GaAs nanowires. , 2013, Nano letters.

[125]  G. Güntherodt,et al.  Light scattering in solids V: superlattices and others microstructures , 1989 .

[126]  G. Abstreiter,et al.  Tunable Quantum Confinement in Ultrathin, Optically Active Semiconductor Nanowires Via Reverse‐Reaction Growth , 2015, Advanced materials.

[127]  Bryan M. Wong,et al.  Optical, structural, and numerical investigations of GaAs/AlGaAs core-multishell nanowire quantum well tubes. , 2013, Nano letters.

[128]  J. Arbiol,et al.  Untangling the electronic band structure of wurtzite GaAs nanowires by resonant Raman spectroscopy. , 2011, ACS nano.

[129]  E. Towe,et al.  Molecular beam epitaxial growth of (Al,Ga)As/GaAs heterostructures and Si doping characterization study on vicinal (110) GaAs substrates , 1993 .

[130]  M. Capizzi,et al.  Polarized light absorption in wurtzite InP nanowire ensembles. , 2015, Nano letters.

[131]  R. Fischer,et al.  Comprehensive analysis of Si-doped Al x Ga 1-x As (x=0 to 1): Theory and experiments , 1984 .

[132]  Giacomo Mariani,et al.  Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators. , 2013, Nano letters.

[133]  Seung-Ho Lee,et al.  Self-assembled GaN nano-rods grown directly on (111) Si substrates : Dependence on growth conditions , 2005 .

[134]  M. Capizzi,et al.  Resonant depletion of photogenerated carriers in InGaAs/GaAs nanowire mats , 2013 .

[135]  W. Lu,et al.  Semiconductor nanowires from next-generation electronics to sustainable energy , 2014 .

[136]  Silvija Gradecak,et al.  General synthesis of manganese-doped II-VI and III-V semiconductor nanowires. , 2005, Nano letters.

[137]  A. Marini,et al.  From Si nanowires to porous silicon: the role of excitonic effects. , 2007, Physical review letters.

[138]  M. Capizzi,et al.  Value and Anisotropy of the Electron and Hole Mass in Pure Wurtzite InP Nanowires. , 2016, Nano letters.

[139]  Chennupati Jagadish,et al.  Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. , 2009, Nano letters.

[140]  Michael Grätzel,et al.  Gallium arsenide p-i-n radial structures for photovoltaic applications , 2009 .

[141]  Tae-Wook Kim,et al.  Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. , 2007, Nano letters.

[142]  Linyou Cao,et al.  Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.

[143]  Charles M Lieber,et al.  Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics , 2012, Proceedings of the National Academy of Sciences.

[144]  A. Manolescu,et al.  Spin and impurity effects on flux-periodic oscillations in core-shell nanowires , 2014, 1404.1798.

[145]  Igor Levin,et al.  Catalyst-free growth of GaN nanowires , 2006 .

[146]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.

[147]  F. Meyer,et al.  Molecular beam epitaxy of InAs nanowires in SiO2 nanotube templates: challenges and prospects for integration of III–Vs on Si , 2016, Nanotechnology.

[148]  Charles M. Lieber,et al.  Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics , 2004 .

[149]  Bor-Ran Li,et al.  Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. , 2014, Biosensors & bioelectronics.

[150]  G. A. Nemnes,et al.  Conductance oscillations of core-shell nanowires in transversal magnetic fields , 2016, 1601.01477.

[151]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[152]  Lucas Schweickert,et al.  Spontaneous alloy composition ordering in GaAs-AlGaAs core-shell nanowires. , 2013, Nano letters.

[153]  K. Thelander A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires , 2008 .

[154]  Bryan M. Wong,et al.  Nanoscale Effects on Heterojunction Electron Gases in GaN/AlGaN Core/Shell Nanowires , 2011, Nano letters.

[155]  M. Kaniber,et al.  Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures , 2009 .

[156]  V. Zwiller,et al.  Crystal phase quantum dots. , 2010, Nano letters.

[157]  I. Buyanova,et al.  Core–shell carrier and exciton transfer in GaAs/GaNAs coaxial nanowires , 2016 .

[158]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[159]  W. Prost,et al.  n‐GaAs/InGaP/p‐GaAs Core‐Multishell Nanowire Diodes for Efficient Light‐to‐Current Conversion , 2012 .

[160]  M. Voos,et al.  Optical studies of impurity trapping at the GaAlAs/GaAs interface in quantum well structures , 1985 .

[161]  A. F. Morral,et al.  Compensation mechanism in silicon-doped gallium arsenide nanowires , 2010 .

[162]  Excitonic Diffusion in InGaN/GaN Core-Shell Nanowires. , 2016, Nano letters.

[163]  Phonon coherent resonance and its effect on thermal transport in core-shell nanowires. , 2011, The Journal of chemical physics.

[164]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[165]  N. Dasgupta,et al.  25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications , 2014, Advanced materials.

[166]  T. Mimura,et al.  A New Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions , 1980 .

[167]  A Gustafsson,et al.  Self-assembled quantum dots in a nanowire system for quantum photonics. , 2013, Nature materials.

[168]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[169]  J. Arbiol,et al.  Three-dimensional nanoscale study of Al segregation and quantum dot formation in GaAs/AlGaAs core-shell nanowires , 2014 .

[170]  Otto L Muskens,et al.  Design of light scattering in nanowire materials for photovoltaic applications. , 2008, Nano letters.

[171]  Takashi Fukui,et al.  Fabrication of InP∕InAs∕InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy , 2006 .

[172]  Matthias Weiss,et al.  Dynamic acoustic control of individual optically active quantum dot-like emission centers in heterostructure nanowires. , 2014, Nano letters.

[173]  Sung Min Kim,et al.  High performance twin silicon nanowire MOSFET(TSNWFET) on bulk si wafer , 2008, 2006 IEEE Nanotechnology Materials and Devices Conference.

[174]  J. Zou,et al.  Growth of III-V semiconductor nanowires and their heterostructures , 2016, Science China Materials.

[175]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[176]  G. A. Nemnes,et al.  Adiabatic Edge Channel Transport in a Nanowire Quantum Point Contact Register. , 2016, Nano letters.

[177]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[178]  Wei Lu,et al.  TOPICAL REVIEW: Semiconductor nanowires , 2006 .

[179]  Ray R. LaPierre,et al.  GaP/GaAsP/GaP core–multishell nanowire heterostructures on (111) silicon , 2007 .

[180]  Charles M. Lieber,et al.  Chapter 1:Semiconductor Nanowire Growth and Integration , 2014 .

[181]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[182]  T. Markussen Surface disordered Ge-Si core-shell nanowires as efficient thermoelectric materials. , 2012, Nano letters.

[183]  C. Bougerol,et al.  Ultrafast room temperature single-photon source from nanowire-quantum dots. , 2012, Nano letters.

[184]  Prediction of inelastic light scattering spectra from electronic collective excitations in GaAs/AlGaAs core-multishell nanowires , 2015, 1504.04550.

[185]  Wu-Xing Zhou,et al.  Enhancement of Thermoelectric Performance by Reducing Phonon Thermal Conductance in Multiple Core-shell Nanowires , 2014, Scientific Reports.

[186]  A. Manolescu,et al.  Signature of snaking states in the conductance of core-shell nanowires. , 2014, Nano letters.

[187]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[188]  G. Abstreiter,et al.  Crystal Phase Quantum Dots in the Ultrathin Core of GaAs-AlGaAs Core-Shell Nanowires. , 2015, Nano letters.

[189]  J. Morante,et al.  InAs quantum dot arrays decorating the facets of GaAs nanowires. , 2010, ACS nano.

[190]  Emanuel Tutuc,et al.  Radial modulation doping in core-shell nanowires. , 2014, Nature nanotechnology.

[191]  A. Bertoni,et al.  Tailoring the core electron density in modulation-doped core−multi-shell nanowires , 2016, Nanotechnology.

[192]  T. Schäpers,et al.  Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes. , 2012, Nano letters.

[193]  M. Dresselhaus,et al.  Thermal conductivity modeling of core-shell and tubular nanowires. , 2005, Nano letters.

[194]  G. Abstreiter,et al.  Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature , 2013, Nature Communications.

[195]  Wladek Walukiewicz,et al.  Band gaps of InN and group III nitride alloys , 2003 .

[196]  C. Lieber,et al.  12 GHz $F_{\rm MAX}$ GaN/AlN/AlGaN Nanowire MISFET , 2009 .

[197]  T. Schäpers,et al.  Preparation of Ohmic contacts to GaAs/AlGaAs-core/shell-nanowires , 2012 .

[198]  Luca Dal Negro,et al.  Photonic-plasmonic coupling of GaAs single nanowires to optical nanoantennas. , 2014, Nano letters.

[199]  T. Ihn Topological insulators: Oscillations in the ribbons. , 2010, Nature materials.

[200]  R R LaPierre,et al.  Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell. , 2013, Nanotechnology.

[201]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[202]  Thomas Richter,et al.  Size-dependent photoconductivity in MBE-grown GaN-nanowires. , 2005, Nano letters.

[203]  T. Schäpers,et al.  Angle-dependent magnetotransport in GaAs/InAs core/shell nanowires , 2016, Scientific Reports.

[204]  J. Rivas,et al.  Nanowire antenna absorption probed with time-reversed fourier microscopy. , 2014, Nano letters.

[205]  Elisabeth Müller,et al.  Optically bright quantum dots in single Nanowires. , 2005, Nano letters.

[206]  Yu Cao,et al.  Controlled synthesis of AlN/GaN multiple quantum well nanowire structures and their optical properties. , 2012, Nano letters.

[207]  Jing Guo,et al.  Ballistic Inas Nanowire Transistors , 2022 .

[208]  M. Cardona Folded, confined, interface, surface, and slab vibrational modes in semiconductor superlattices , 1989 .

[209]  Direct measurement of band edge discontinuity in individual core-shell nanowires by photocurrent spectroscopy. , 2013, Nano letters.

[210]  R. T. Phillips,et al.  Exciton recombination at crystal-phase quantum rings in GaAs/InxGa1−xAs core/multishell nanowires , 2016 .

[211]  L. Lauhon,et al.  Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors. , 2015, Nano letters.

[212]  Christophe Delerue,et al.  Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement , 2007 .

[213]  A. Fontcuberta i Morral,et al.  P-doping mechanisms in catalyst-free gallium arsenide nanowires. , 2010, Nano letters.

[214]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[215]  Grzegorz Grzela,et al.  Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires. , 2011, ACS nano.

[216]  R. LaPierre,et al.  III–V nanowire photovoltaics: Review of design for high efficiency , 2013 .

[217]  Kenji Hiruma,et al.  GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. , 2010, Nano letters.