Collections, sets and types

We give a formulation of simple type theory in which types are just sets. This theory is obtained by relativizing quantifiers and replacing typing predicates by membership of some sets. It can easily be extended to include predicate subtyping.

[1]  Hao Wang,et al.  Logic of many-sorted theories , 1952, Journal of Symbolic Logic.

[2]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[3]  Yves Caseau Étude et réalisation d'un langage objet : lore , 1987 .

[4]  Gillier,et al.  Logic for Computer Science , 1986 .

[5]  H. Friedman Equality between functionals , 1975 .

[6]  A. Schmidt Über deduktive Theorien mit mehreren Sorten von Grunddingen , 1938 .

[7]  Rozsa Peter Review: Leon Henkin, Completeness in the Theory of Types , 1951 .

[8]  Peter B. Andrews General Models, Descriptions, and Choice in Type Theory , 1972, J. Symb. Log..

[9]  de Ng Dick Bruijn,et al.  A survey of the project Automath , 1980 .

[10]  Gérard P. Huet,et al.  A Unification Algorithm for Typed lambda-Calculus , 1975, Theor. Comput. Sci..

[11]  Peter B. Andrews General models and extensionality , 1972, Journal of Symbolic Logic.

[12]  Jean-Louis Krivine,et al.  Lambda-calculus, types and models , 1993, Ellis Horwood series in computers and their applications.

[13]  Eric T. Bell,et al.  The Philosophy of Mathematics , 1950 .

[14]  J. Benthem,et al.  Higher-Order Logic , 2001 .

[15]  Peter B. Andrews An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.

[16]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[17]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[18]  P. Andrews,et al.  A reduction of the axioms for the theory of prepositional types , 1963 .

[19]  S. Feferman A Language and Axioms for Explicit Mathematics , 1975 .

[20]  Dale A. Miller,et al.  A compact representation of proofs , 1987, Stud Logica.

[21]  Gérard P. Huet,et al.  A Mechanization of Type Theory , 1973, IJCAI.

[22]  Fred B. Schneider,et al.  A Theory of Sets , 1993 .

[23]  K. Schutte Review: Dag Prawitz, Hauptsatz for Higher Order Logic; Dag Prawitz, Completeness and Hauptsatz for Second Order Logic; Moto-o Takahashi, A Proof of Cut-Elimination in Simple Type-Theory , 1974 .

[24]  Jacques Herbrand Badania nad teorja dowodu = Recherches sur la théorie de la démonstration , 1930 .

[25]  John Lake Comparing type theory and set theory , 1975, Math. Log. Q..

[26]  Manfred Kerber How to Prove Higher Order Theorems in First Order Logic , 1991, IJCAI.

[27]  Dag Prawitz Hauptsatz for Higher Order Logic , 1968, J. Symb. Log..

[28]  W. Quine,et al.  Set Theory and Its Logic. , 1965 .

[29]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[30]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[31]  Dale A. Miller,et al.  Proofs in Higher-Order Logic , 1983 .

[32]  Heinz-Dieter Ebbinghaus Axiomatizing set theory , 1976 .

[33]  L. Chwistek The theory of constructive types , .

[34]  Renatus Ziegler,et al.  On the Foundations of Set Theory , 1996 .

[35]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[36]  Jean-Raymond Abrial,et al.  The B-book - assigning programs to meanings , 1996 .

[37]  Natarajan Shankar,et al.  Formal Verification for Fault-Tolerant Architectures: Prolegomena to the Design of PVS , 1995, IEEE Trans. Software Eng..

[38]  R. Montague,et al.  Set Theory and Higher-Order Logic , 1965 .

[39]  Gilles Dowek Lambda-calculus, Combinators and the Comprehension Scheme , 1995, TLCA.

[40]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[41]  Solomon Feferman,et al.  Theories of Finite Type Related to Mathematical Practice , 1977 .