Incorporating Phase Information for Source Separation via Spectrogram Factorization

Spectrogram factorization methods have been proposed for single channel source separation and audio analysis. Typically, the mixture signal is first converted into a time-frequency representation such as the short-time Fourier transform (STFT). The phase information is thrown away and this spectrogram matrix is then factored into the sum of rank-one source spectrograms. This approach incorrectly assumes the mixture spectrogram is the sum of the source spectrograms. In fact, the mixture spectrogram depends on the phase of the source STFTs. We investigate the consequences of this common assumption and introduce an approach that leverages a probabilistic representation of phase to improve the separation results.