Unsupervised delineation of the vessel tree in retinal fundus images

Retinal imaging has gained particular popularity as it provides an opportunity to diagnose various medical pathologies in a non-invasive way. One of the basic and very important steps in the analysis of such images is the delineation of the vessel tree from the background. Such segmentation facilitates the investigation of the morphological characteristics of the vessel tree and the analysis of any lesions in the background, which are both indicators for various pathologies. We propose a novel method called B-COSFIRE for the delineation of the vessel tree. It is based on the classic COSFIRE approach, which is a trainable nonlinear filtering method. The responses of a B-COSFIRE filter is achieved by combining the responses of difference-of-Gaussians filters whose areas of support are determined in an automatic configuration step. We configure two types of B-COSFIRE filters, one that responds selectively along vessels and another that is selective to vessel endings. The segmentation of the vessel tree is achieved by summing up the response maps of both types of filters followed by thresholding. We demonstrate high effectiveness of the proposed approach by performing experiments on four public data sets, namely DRIVE, STARE, CHASE DB1 and HRF. The delineation approach that we propose also has lower time complexity than existing methods.

[1]  George Azzopardi,et al.  A CORF computational model of a simple cell that relies on LGN input outperforms the Gabor function model , 2012, Biological Cybernetics.

[2]  George Azzopardi,et al.  Trainable COSFIRE filters for vessel delineation with application to retinal images , 2015, Medical Image Anal..

[3]  Mohammed Al-Rawi,et al.  An improved matched filter for blood vessel detection of digital retinal images , 2007, Comput. Biol. Medicine.

[4]  Xiaoyi Jiang,et al.  Adaptive Local Thresholding by Verification-Based Multithreshold Probing with Application to Vessel Detection in Retinal Images , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Dogan Aydin,et al.  Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm , 2009, Comput. Methods Programs Biomed..

[6]  Roberto Marcondes Cesar Junior,et al.  Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification , 2005, IEEE Transactions on Medical Imaging.

[7]  Anil A. Bharath,et al.  Segmentation of blood vessels from red-free and fluorescein retinal images , 2007, Medical Image Anal..

[8]  C. Paterson,et al.  Measuring retinal vessel tortuosity in 10-year-old children: validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) program. , 2009, Investigative ophthalmology & visual science.

[9]  Bram van Ginneken,et al.  Comparative study of retinal vessel segmentation methods on a new publicly available database , 2004, SPIE Medical Imaging.

[10]  George Azzopardi,et al.  A Push-Pull CORF Model of a Simple Cell with Antiphase Inhibition Improves SNR and Contour Detection , 2014, PloS one.

[11]  A.D. Hoover,et al.  Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response , 2000, IEEE Transactions on Medical Imaging.

[12]  Elli Angelopoulou,et al.  Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database , 2013, IET Image Process..

[13]  George Azzopardi,et al.  Trainable COSFIRE Filters for Keypoint Detection and Pattern Recognition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  José Manuel Bravo,et al.  A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features , 2011, IEEE Transactions on Medical Imaging.

[15]  Max A. Viergever,et al.  Ridge-based vessel segmentation in color images of the retina , 2004, IEEE Transactions on Medical Imaging.

[16]  Elisa Ricci,et al.  Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Classification , 2007, IEEE Transactions on Medical Imaging.

[17]  Bunyarit Uyyanonvara,et al.  An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation , 2012, IEEE Transactions on Biomedical Engineering.

[18]  Alan Wee-Chung Liew,et al.  General Retinal Vessel Segmentation Using Regularization-Based Multiconcavity Modeling , 2010, IEEE Transactions on Medical Imaging.

[19]  Andrew Hunter,et al.  An Active Contour Model for Segmenting and Measuring Retinal Vessels , 2009, IEEE Transactions on Medical Imaging.

[20]  Ana Maria Mendonça,et al.  Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction , 2006, IEEE Transactions on Medical Imaging.