Glycolysis in the African Trypanosome: Targeting Enzymes and Their Subcellular Compartments for Therapeutic Development

Subspecies of the African trypanosome, Trypanosoma brucei, which cause human African trypanosomiasis, are transmitted by the tsetse fly, with transmission-essential lifecycle stages occurring in both the insect vector and human host. During infection of the human host, the parasite is limited to using glycolysis of host sugar for ATP production. This dependence on glucose breakdown presents a series of targets for potential therapeutic development, many of which have been explored and validated as therapeutic targets experimentally. These include enzymes directly involved in glucose metabolism (e.g., the trypanosome hexokinases), as well as cellular components required for development and maintenance of the essential subcellular compartments that house the major part of the pathway, the glycosomes.

[1]  K. Christensen,et al.  Quercetin, a fluorescent bioflavanoid, inhibits Trypanosoma brucei hexokinase 1. , 2011, Experimental parasitology.

[2]  I. J. van der Klei,et al.  Peroxisomes as dynamic organelles: peroxisome abundance in yeast , 2010, The FEBS journal.

[3]  H. Tabak,et al.  Peroxisomal Membrane Proteins Insert into the Endoplasmic Reticulum , 2010, Molecular biology of the cell.

[4]  C. Verlinde,et al.  An internal sequence targets Trypanosoma brucei triosephosphate isomerase to glycosomes. , 2010, Molecular and biochemical parasitology.

[5]  G. Mustata,et al.  A Target-Based High Throughput Screen Yields Trypanosoma brucei Hexokinase Small Molecule Inhibitors with Antiparasitic Activity , 2010, PLoS neglected tropical diseases.

[6]  Ramesh Kumar,et al.  Expression of a PTS2-truncated hexokinase produces glucose toxicity in Leishmania donovani. , 2010, Molecular and biochemical parasitology.

[7]  Marten Veenhuis,et al.  Divide et Impera: The Dictum of Peroxisomes , 2010, Traffic.

[8]  R. Rachubinski,et al.  Phosphorylation-dependent Activation of Peroxisome Proliferator Protein PEX11 Controls Peroxisome Abundance* , 2009, The Journal of Biological Chemistry.

[9]  Barbara M. Bakker,et al.  Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes , 2008, Proceedings of the National Academy of Sciences.

[10]  W. Hol,et al.  Structural insights into the recognition of peroxisomal targeting signal 1 by Trypanosoma brucei peroxin 5. , 2008, Journal of molecular biology.

[11]  J. Chambers,et al.  Assembly of Heterohexameric Trypanosome Hexokinases Reveals That Hexokinase 2 Is a Regulable Enzyme* , 2008, Journal of Biological Chemistry.

[12]  A. Motley,et al.  Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p , 2008, Journal of Cell Science.

[13]  Fred D. Mast,et al.  Genome-wide analysis of signaling networks regulating fatty acid–induced gene expression and organelle biogenesis , 2008, The Journal of cell biology.

[14]  J. Chambers,et al.  The anti-trypanosomal agent lonidamine inhibits Trypanosoma brucei hexokinase 1. , 2008, Molecular and biochemical parasitology.

[15]  P. Michels,et al.  Turnover of glycosomes during life-cycle differentiation of Trypanosoma brucei , 2008, Autophagy.

[16]  A. Pilar,et al.  Interaction of Leishmania PTS2 receptor peroxin 7 with the glycosomal protein import machinery. , 2008, Molecular and biochemical parasitology.

[17]  D. Steverding,et al.  The history of African trypanosomiasis , 2008, Parasites & Vectors.

[18]  M. Parsons,et al.  Conservation of PEX19-Binding Motifs Required for Protein Targeting to Mammalian Peroxisomal and Trypanosome Glycosomal Membranes , 2007, Eukaryotic Cell.

[19]  Y. Fujiki,et al.  Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis. , 2007, Experimental cell research.

[20]  Eric Oldfield,et al.  Bisphosphonates as Inhibitors of Trypanosoma cruzi Hexokinase , 2007, Journal of Biological Chemistry.

[21]  D. Vertommen,et al.  Characterization of the role of the receptors PEX5 and PEX7 in the import of proteins into glycosomes of Trypanosoma brucei. , 2007, Biochimica et biophysica acta.

[22]  D. Wenzel,et al.  The PEROXIN11 Protein Family Controls Peroxisome Proliferation in Arabidopsis[W] , 2007, The Plant Cell Online.

[23]  Kerry S. Smith,et al.  Activity of a Second Trypanosoma brucei Hexokinase Is Controlled by an 18-Amino-Acid C-Terminal Tail , 2006, Eukaryotic Cell.

[24]  Arjen M. Krikken,et al.  Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae , 2006, Journal of Cell Science.

[25]  Keith Gull,et al.  Chromosome-Wide Analysis of Gene Function by RNA Interference in the African Trypanosome , 2006, Eukaryotic Cell.

[26]  A. Hehl,et al.  Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest , 2006, Journal of Cell Science.

[27]  L. Azéma,et al.  Cell permeation of a Trypanosoma brucei aldolase inhibitor: evaluation of different enzyme-labile phosphate protecting groups. , 2006, Bioorganic & medicinal chemistry letters.

[28]  F. Voncken,et al.  Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei , 2006, Proteomics.

[29]  Franco J. Vizeacoumar,et al.  The Dynamin-like Protein Vps1p of the Yeast Saccharomyces cerevisiae Associates with Peroxisomes in a Pex19p-dependent Manner* , 2006, Journal of Biological Chemistry.

[30]  Eric Oldfield,et al.  Inhibition of Trypanosoma cruzi hexokinase by bisphosphonates. , 2006, Journal of medicinal chemistry.

[31]  D. Rigden,et al.  Autophagy and Related processes in Trypanosomatids: Insights from Genomic and Bioinformatic Analyses , 2006, Autophagy.

[32]  M. Schrader,et al.  A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. , 2005, Molecular biology of the cell.

[33]  Barbara M. Bakker,et al.  Experimental and in Silico Analyses of Glycolytic Flux Control in Bloodstream Form Trypanosoma brucei* , 2005, Journal of Biological Chemistry.

[34]  Peter Philippsen,et al.  Contribution of the Endoplasmic Reticulum to Peroxisome Formation , 2005, Cell.

[35]  M. Parsons,et al.  Identification of trypanosomatid PEX19: functional characterization reveals impact on cell growth and glycosome size and number. , 2005, Molecular and biochemical parasitology.

[36]  Marilyn Parsons,et al.  Probing the Role of Compartmentation of Glycolysis in Procyclic Form Trypanosoma brucei , 2005, Journal of Biological Chemistry.

[37]  Mark C. Field,et al.  The Single Dynamin-like Protein of Trypanosoma brucei Regulates Mitochondrial Division and Is Not Required for Endocytosis* , 2004, Journal of Biological Chemistry.

[38]  D. Malvy,et al.  Quercetin Induces Apoptosis of Trypanosoma brucei gambiense and Decreases the Proinflammatory Response of Human Macrophages , 2004, Antimicrobial Agents and Chemotherapy.

[39]  Zefeng Wang,et al.  The Adenosine Analog Tubercidin Inhibits Glycolysis in Trypanosoma brucei as Revealed by an RNA Interference Library* , 2003, Journal of Biological Chemistry.

[40]  R. Erdmann,et al.  Conserved function of pex11p and the novel pex25p and pex27p in peroxisome biogenesis. , 2003, Molecular biology of the cell.

[41]  Marilyn Parsons,et al.  Glucose is toxic to glycosome-deficient trypanosomes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Zefeng Wang,et al.  Glycolysis modulates trypanosome glycoprotein expression as revealed by an RNAi library , 2002, The EMBO journal.

[43]  F. Opperdoes,et al.  Sequencing, modeling, and selective inhibition of Trypanosoma brucei hexokinase. , 2002, Chemistry & biology.

[44]  S. Gould,et al.  PEX11 promotes peroxisome division independently of peroxisome metabolism , 2002, The Journal of cell biology.

[45]  Barbara M. Bakker,et al.  Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. , 2001, The Biochemical journal.

[46]  T Furuya,et al.  Biogenesis and function of peroxisomes and glycosomes. , 2001, Molecular and biochemical parasitology.

[47]  C. Clayton,et al.  An essential dimeric membrane protein of trypanosome glycosomes , 2001, Molecular microbiology.

[48]  C L Verlinde,et al.  Glycolysis as a target for the design of new anti-trypanosome drugs. , 2001, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[49]  J. Berg,et al.  Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5 , 2000, Nature Structural Biology.

[50]  M. Gelb,et al.  Adenosine analogues as inhibitors of Trypanosoma brucei phosphoglycerate kinase: elucidation of a novel binding mode for a 2-amino-N(6)-substituted adenosine. , 2000, Journal of medicinal chemistry.

[51]  W. Hol,et al.  Structures of type 2 peroxisomal targeting signals in two trypanosomatid aldolases. , 2000, Journal of molecular biology.

[52]  Barbara M. Bakker,et al.  Compartmentation protects trypanosomes from the dangerous design of glycolysis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  F. Opperdoes,et al.  Structure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S. South,et al.  Peroxisome Synthesis in the Absence of Preexisting Peroxisomes , 1999, The Journal of cell biology.

[55]  Y. Fujiki,et al.  cDNA cloning and characterization of a constitutively expressed isoform of the human peroxin Pex11p. , 1998, Biochemical and biophysical research communications.

[56]  D. Valle,et al.  An isoform of pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. , 1998, Human molecular genetics.

[57]  C. Clayton,et al.  Elongation and clustering of glycosomes in Trypanosoma brucei overexpressing the glycosomal Pex11p , 1998, The EMBO journal.

[58]  F. Wieland,et al.  Peroxisome Biogenesis: Involvement of ARF and Coatomer , 1998, Journal of Cell Biology.

[59]  T. Tsukamoto,et al.  Peroxisome Targeting Signal Type 1 (PTS1) Receptor Is Involved in Import of Both PTS1 and PTS2: Studies withPEX5-Defective CHO Cell Mutants , 1998, Molecular and Cellular Biology.

[60]  B. T. ter Kuile,et al.  Adaptation of metabolic enzyme activities of Trypanosoma brucei promastigotes to growth rate and carbon regimen , 1997, Journal of bacteriology.

[61]  B. T. Kuile,et al.  Adaptation of metabolic enzyme activities of Trypanosoma brucei promastigotes to growth rate and carbon regimen. , 1997 .

[62]  Barbara M. Bakker,et al.  Glycolysis in Bloodstream Form Trypanosoma brucei Can Be Understood in Terms of the Kinetics of the Glycolytic Enzymes* , 1997, The Journal of Biological Chemistry.

[63]  J. Goodman,et al.  Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division , 1996, The Journal of cell biology.

[64]  M. Marzioch,et al.  The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene. , 1996, The EMBO journal.

[65]  F. Opperdoes,et al.  Cloning and characterization of the NAD-linked glycerol-3-phosphate dehydrogenases of Trypanosoma brucei brucei and Leishmania mexicana mexicana and expression of the trypanosome enzyme in Escherichia coli. , 1996, Molecular and biochemical parasitology.

[66]  F. Opperdoes,et al.  Specific inhibitors for the glycolytic enzymes of Trypanosoma brucei. , 1995, Bioorganic & medicinal chemistry.

[67]  J. Dyer,et al.  Pmp27 promotes peroxisomal proliferation , 1995, The Journal of cell biology.

[68]  P. Lazarow,et al.  PEB1 (PAS7) in Saccharomyces cerevisiae encodes a hydrophilic, intra- peroxisomal protein that is a member of the WD repeat family and is essential for the import of thiolase into peroxisomes , 1995, The Journal of cell biology.

[69]  G. Blobel,et al.  Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p , 1995, The Journal of cell biology.

[70]  M. Marzioch,et al.  PAS7 encodes a novel yeast member of the WD‐40 protein family essential for import of 3‐oxoacyl‐CoA thiolase, a PTS2‐containing protein, into peroxisomes. , 1994, The EMBO journal.

[71]  S Subramani,et al.  Mutagenesis of the amino targeting signal of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxisomes in vivo. , 1994, The Journal of biological chemistry.

[72]  T. Tsukamoto,et al.  Characterization of the signal peptide at the amino terminus of the rat peroxisomal 3-ketoacyl-CoA thiolase precursor. , 1994, The Journal of biological chemistry.

[73]  I. Smith,et al.  The pharmacokinetics of oral lonidamine in breast and lung cancer patients. , 1991, Seminars in oncology.

[74]  M. Parsons,et al.  An allele of Trypanosoma brucei cytoplasmic phosphoglycerate kinase is a mosaic of other alleles and genes. , 1990, Molecular and biochemical parasitology.

[75]  S. Gould,et al.  A conserved tripeptide sorts proteins to peroxisomes , 1989, The Journal of cell biology.

[76]  B. Silvestrini,et al.  The Role of Mitochondrial Hexokinase in Neoplastic Phenotype and Its Sensitivity to Lonidamine a , 1988, Annals of the New York Academy of Sciences.

[77]  P. Lazarow,et al.  Acyl‐CoA oxidase contains two targeting sequences each of which can mediate protein import into peroxisomes. , 1988, The EMBO journal.

[78]  B. Silvestrini,et al.  The effect of the association of Gossypol and Lonidamine on the energy metabolism of Ehrlich ascites tumor cells. , 1983, Experimental and molecular pathology.

[79]  F. Opperdoes,et al.  Localization of nine glycolytic enzymes in a microbody‐like organelle in Trypanosoma brucei: The glycosome , 1977, FEBS letters.

[80]  Y. Graziani Bioflavonoid regulation of ATPase and hexokinase activity in Ehrlich ascites cell mitochondria. , 1977, Biochimica et biophysica acta.

[81]  A. Wettstein Fortschritte der Arzneimittelforschung , 1960, Experientia.

[82]  P. Michels,et al.  Genetic validation of aldolase and glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei. , 2010, Molecular and biochemical parasitology.

[83]  Xinchun Zhang,et al.  Two small protein families, DYNAMIN-RELATED PROTEIN3 and FISSION1, are required for peroxisome fission in Arabidopsis. , 2009, The Plant journal : for cell and molecular biology.

[84]  Barbara M. Bakker,et al.  Metabolic control analysis to identify optimal drug targets. , 2007, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[85]  J. Berg,et al.  Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5 , 2002, Nature Structural Biology.

[86]  C. Wang,et al.  Trypanosoma brucei: identification of an internal region of phosphoglycerate kinase required for targeting to glycosomal microbodies. , 1997, Experimental parasitology.

[87]  F. Opperdoes Compartmentation of carbohydrate metabolism in trypanosomes. , 1987, Annual review of microbiology.

[88]  Peter K. Kim,et al.  JCB: ARTICLE The , 2022 .