Gravitational Radiation from Intermediate-Mass Black Holes

Recent X-ray observations of galaxies with ROSAT, ASCA, and Chandra have revealed numerous bright off-center point sources that, if isotropic emitters, are likely to be intermediate-mass black holes, with M ~ 102-104 M☉. The origin of these objects is under debate, but observations suggest that a significant number of them currently reside in young high-density stellar clusters. There is also growing evidence that some Galactic globular clusters harbor black holes of similar mass, from observations of stellar kinematics. In such high-density stellar environments, the interactions of intermediate-mass black holes are promising sources of gravitational waves for ground-based and space-based detectors. Here we explore the signal strengths of binaries containing intermediate-mass black holes or stellar-mass black holes in dense stellar clusters. We estimate that a few to tens per year of these objects will be detectable during the last phase of their inspiral with the advanced Laser Interferometer Gravitational-Wave Observatory detector, and up to tens per year will be seen during merger, depending on the spins of the black holes. We also find that if these objects reside in globular clusters, then tens of sources will be detectable with the Laser Interferometer Space Antenna from the Galactic globular system in a 5 yr integration, and similar numbers will be detectable from more distant galaxies. The signal strength depends on the eccentricity distribution, but we show that there is promise for strong detection of pericenter precession and Lense-Thirring precession of the orbital plane. We conclude by discussing what could be learned about binaries, dense stellar systems, and strong gravity if such signals are detected.

[1]  M. Colpi,et al.  Formation of an Evanescent Proto-Neutron Star Binary and the Origin of Pulsar Kicks , 2002, astro-ph/0207327.

[2]  T. Maccarone,et al.  The Low-Mass X-Ray Binary-Globular Cluster Connection in NGC 4472 , 2002, astro-ph/0206221.

[3]  Monica Colpi,et al.  The Case of PSR J1911–5958A in the Outskirts of NGC 6752: Signature of a Black Hole Binary in the Cluster Core? , 2002, astro-ph/0204291.

[4]  C. Sarazin,et al.  X-Ray Binaries and Globular Clusters in Elliptical Galaxies , 2002, astro-ph/0204172.

[5]  Masaki Ando,et al.  Current status of TAMA , 2002 .

[6]  E. Colbert,et al.  A Catalog of Candidate Intermediate-Luminosity X-Ray Objects , 2002, astro-ph/0204002.

[7]  M. Begelman Super-Eddington Fluxes from Thin Accretion Disks? , 2002, astro-ph/0203030.

[8]  M. J. Freyberg,et al.  Evidence of Spin and Energy Extraction in a Galactic Black Hole Candidate: The XMM-Newton/EPIC-pn Spectrum of XTE J1650–500 , 2002, astro-ph/0202375.

[9]  M. Miller,et al.  Four-Body Effects in Globular Cluster Black Hole Coalescence , 2002, astro-ph/0202298.

[10]  M. Shara,et al.  The Promiscuous Nature of Stars in Clusters , 2002, astro-ph/0201217.

[11]  H. Falcke,et al.  Population X: Are the super-Eddington X-ray sources beamed jets in microblazars or intermediate mass black holes? , 2001, astro-ph/0112385.

[12]  M. Benacquista Gravitational radiation from black hole binaries in globular clusters , 2001, astro-ph/0110016.

[13]  B. Schmidt,et al.  Formation of the Black Hole in Nova Scorpii , 2001, astro-ph/0109244.

[14]  Frederic A. Rasio,et al.  Stellar Collisions and the Interior Structure of Blue Stragglers , 2001, astro-ph/0107388.

[15]  M. Miller,et al.  Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.

[16]  S. Molendi,et al.  XMM-EPIC observation of MCG-6-30-15: direct evidence for the extraction of energy from a spinning black hole? , 2001, astro-ph/0110520.

[17]  S. Hughes Untangling the merger history of massive black holes with LISA , 2001, astro-ph/0108483.

[18]  Michael Loewenstein,et al.  The X-Ray Globular Cluster Population in NGC 1399 , 2001, astro-ph/0107362.

[19]  Toshikazu Ebisuzaki,et al.  UvA-DARE ( Digital Academic Repository ) Missing Link Found ? The " Runaway " Path to Supermassive Black Holes , 2001 .

[20]  T. Strohmayer Discovery of a Second High-Frequency Quasi-periodic Oscillation from the Microquasar GRS 1915+105 , 2001, astro-ph/0105338.

[21]  S. Murray,et al.  High-Resolution X-ray Imaging of a Globular Cluster Core: Compact Binaries in 47Tuc , 2001, Science.

[22]  C. Leitherer,et al.  The Stellar Content of the Super-Star Clusters in NGC 1569 , 2001, astro-ph/0105195.

[23]  A. King,et al.  Ultraluminous X-Ray Sources in External Galaxies , 2001, astro-ph/0104333.

[24]  M. Milosavljevic,et al.  Formation of Galactic Nuclei , 2001, astro-ph/0103350.

[25]  S. Murray,et al.  Chandra Observations of “The Antennae” Galaxies (NGC 4038/9) , 2001, astro-ph/0102256.

[26]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[27]  T. Belloni,et al.  High-Frequency Quasi-Periodic Oscillations in the 2000 Outburst of the Galactic Microquasar XTE J1550–564 , 2001, astro-ph/0105371.

[28]  F. Rasio,et al.  LISA sources in globular clusters , 2000, gr-qc/0010020.

[29]  Harvard-Smithsonian Center for Astrophysics,et al.  Discovery of a Luminous, Variable, Off-Center Source in the Nucleus of M82 with the Chandra High-Resolution Camera , 2000, astro-ph/0009250.

[30]  P. Kaaret,et al.  Chandra High-Resolution Camera observations of the luminous X-ray source in the starburst galaxy M82 , 2000, astro-ph/0009211.

[31]  V. Pierro,et al.  Fast and accurate computational tools for gravitational waveforms from binary stars with any orbital eccentricity , 2000, gr-qc/0005044.

[32]  K. Kohno,et al.  Formation of a Massive Black Hole at the Center of the Superbubble in M82 , 2000, astro-ph/0011071.

[33]  S. Hughes Challenges in Mapping the Spacetime of Massive Compact Objects , 2000, gr-qc/0008058.

[34]  Pasadena,et al.  Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA , 2000, gr-qc/0007074.

[35]  J. Cordes,et al.  Pulsar Jets: Implications for Neutron Star Kicks and Initial Spins , 2000, astro-ph/0007272.

[36]  S. Teukolsky,et al.  Quasicircular orbits for spinning binary black holes , 2000, gr-qc/0006084.

[37]  A. Ori,et al.  Transition from inspiral to plunge for a compact body in a circular equatorial orbit around a massive, spinning black hole , 2000, gr-qc/0003032.

[38]  K. Gebhardt,et al.  Canada-France-Hawaii Telescope Adaptive Optics Observations of the Central Kinematics in M15 , 1999, astro-ph/9912172.

[39]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[40]  Barry C. Barish,et al.  The Laser Interferometer Gravitational-Wave Observatory LIGO , 2000 .

[41]  Karsten Danzmann,et al.  LISA mission overview , 2000 .

[42]  Japan.,et al.  Dynamical evolution of rotating stellar systems – II. Post-collapse, equal-mass system , 2001, astro-ph/0109062.

[43]  E. Poisson,et al.  Gravitational waves from eccentric compact binaries: Reduction in signal-to-noise ratio due to nonoptimal signal processing , 1999, gr-qc/9907006.

[44]  B. Gibson,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XX. The Discovery of Cepheids in the Virgo Cluster Galaxy NGC 4548 , 1999 .

[45]  A. Zezas,et al.  ROSAT observations of the dwarf star‐forming galaxy Holmberg II (UGC 4305) , 1999, astro-ph/9903355.

[46]  D. McLaughlin The Efficiency of Globular Cluster Formation , 1999, astro-ph/9901283.

[47]  B. Mihov,et al.  The Nature of Accreting Black Holes in Nearby Galaxy Nuclei , 1999, astro-ph/9901023.

[48]  A. Kusenko Pulsar kicks from neutrino oscillations , 1998, astro-ph/9811144.

[49]  M. Benacquista Gravitational Radiation from Globular Clusters , 1998, astro-ph/9810484.

[50]  E. Phinney,et al.  Birth kicks as the origin of pulsar rotation , 1998, Nature.

[51]  E. Phinney,et al.  Why pulsars rotate and move: kicks at birth , 1998, astro-ph/9803201.

[52]  Philip Massey,et al.  Star Formation in R136: A Cluster of O3 Stars Revealed by Hubble Space Telescope Spectroscopy , 1998 .

[53]  S. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. II. The waves’ information and its extraction, with and without templates , 1997, gr-qc/9710129.

[54]  C. Cutler Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.

[55]  S. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.

[56]  F. D. Ryan Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral , 1997 .

[57]  California Institute of Technology,et al.  The Pulsar kick velocity distribution , 1997, astro-ph/9708071.

[58]  Chris L. Fryer,et al.  Double Neutron Star Systems and Natal Neutron Star Kicks , 1997, astro-ph/9706031.

[59]  R. Spurzem,et al.  Dynamical evolution of rotating stellar systems: I pre-collapse, equal mass systems , 1997, astro-ph/9704284.

[60]  Cambridge,et al.  The profile and equivalent width of the X-ray iron emission line from a disc around a Kerr black hole , 1997, astro-ph/9704177.

[61]  W. Cui,et al.  Black Hole Spin in X-Ray Binaries: Observational Consequences , 1997, astro-ph/9704072.

[62]  F. Schweizer,et al.  ROSAT HRI Observations of NGC 4038/4039, “The Antennae” Galaxies , 1997 .

[63]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[64]  K. Nandra,et al.  The variable iron K emission line in MCG-6-30-15 , 1996 .

[65]  D. Heggie,et al.  Binary--Single-Star Scattering. VII. Hard Binary Exchange Cross Sections for Arbitrary Mass Ratios: Numerical Results and Semianalytic FITS , 1996, astro-ph/9604016.

[66]  G. Quinlan The dynamical evolution of massive black hole binaries i , 1996, astro-ph/9706298.

[67]  Ryan Effect of gravitational radiation reaction on nonequatorial orbits around a Kerr black hole. , 1995, Physical review. D, Particles and fields.

[68]  E. Phinney,et al.  Dynamics and Interactions of Binaries and Neutron Stars in Globular Clusters , 1994, astro-ph/9412078.

[69]  Steinn Sigurdsson,et al.  Binary-single star interactions in globular clusters , 1993 .

[70]  Steinn Sigurdsson,et al.  Primordial black holes in globular clusters , 1993, Nature.

[71]  Piet Hut,et al.  Stellar black holes in globular clusters , 1993, Nature.

[72]  F. Verbunt ORIGIN AND EVOLUTION OF X-RAY BINARIES AND BINARY RADIO PULSARS , 1993 .

[73]  Georges Meylan,et al.  Structure and dynamics of globular clusters , 1993 .

[74]  Wiseman,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. II. Higher-order wave forms and radiation recoil. , 1992, Physical review. D, Particles and fields.

[75]  P. Hut,et al.  The Evolution of a primordial binary population in a globular cluster , 1992 .

[76]  I. Modena,et al.  GENERAL RELATIVITY AND GRAVITATIONAL PHYSICS , 1991, General Relativity and Gravitational Physics.

[77]  P. Hut,et al.  Primordial binaries and globular cluster evolution , 1989, Nature.

[78]  Giuseppina Fabbiano,et al.  X Rays From Normal Galaxies , 1989 .

[79]  Jeremiah P. Ostriker,et al.  On the evolution of globular cluster systems. I - Present characteristics and rate of destruction in our Galaxy , 1988 .

[80]  Stuart Louis Shapiro,et al.  The Collapse of Dense Star Clusters to Supermassive Black Holes: Binaries and Gravitational Radiation , 1987 .

[81]  S. McMillan Triple interactions involving close binaries in globular clusters , 1986 .

[82]  Piet Hut,et al.  Dynamics of Star Clusters , 1985 .

[83]  R. Webbink,et al.  in Dynamics of Star Clusters , 1985 .

[84]  M. Fitchett,et al.  Linear momentum and gravitational waves: circular orbits around a Schwarzschild black hole , 1984 .

[85]  P. Hut Hard binary-single star scattering cross sections for equal masses , 1984 .

[86]  M. Fitchett The influence of gravitational wave momentum losses on the centre of mass motion of a Newtonian binary system , 1983 .

[87]  E. E. Salpeter,et al.  MASS SEGREGATION RELAXATION, AND THE COULOMB LOGARITHM IN N-BODY SYSTEMS (AGAIN) , 1982 .

[88]  W. Press,et al.  Gravitational waves. , 1980, Science.

[89]  Richard A. Wolf,et al.  Star distribution around a massive black hole in a globular cluster , 1976 .

[90]  Martin J. Rees,et al.  Effects of Massive Central Black Holes on Dense Stellar Systems , 1976 .

[91]  M. L. Lidov,et al.  Non-restricted double-averaged three body problem in Hill's case , 1976 .

[92]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[93]  S. Tremaine,et al.  The formation of the nuclei of galaxies. I. M31. , 1975 .

[94]  J. Bekenstein Gravitational-Radiation Recoil and Runaway Black Holes , 1973 .

[95]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[96]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[97]  A. Peres Classical Radiation Recoil , 1962 .

[98]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .