Design and fabrication of novel II-IV semiconductor quantum wire infrared detectors/sensors

A nanoporous alumina template made from a multilayer metal film structure has been developed that allows for the in situ removal of the electrically insulating alumina barrier layer, exposing a Pt electrode at the pore bases. This barrier free nanoporous system has great potential for DC electrodeposition of a wide variety of materials in the alumina pores. The nanoporous template is fabricated in a more practical way than existing techniques and can be used for the fabrication of nanowires of many materials. Because the template is fabricated directly on the final substrate, no film transfer technique is needed and the substrate can include electrical circuitry. A silicon substrate may be used that provides mechanical stability, facilitates processing, and allows integration with IC components. This will allow for cheap and high efficiency infrared detectors to be fabricated in a practical and cost effective way. The quantum wire devices fabricated in this way can be customized to be used as infrared sensors at a variety of infrared wavelengths.

[1]  W. Fawcett,et al.  The mechanism of electrodeposition of cadmium sulphide on inert metals from dimethylsulphoxide solution , 1984 .

[2]  Jing Ming Xu,et al.  Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates , 1996 .

[3]  C. César,et al.  Ultrafast processes in semiconductor doped glasses , 1997 .

[4]  J. Lee Growth of Self-Organized Quantum Dots , 2002 .

[5]  M. Senna,et al.  Preparation and properties of nanocrystalline ZnS : Mn-polymer composite films , 2000 .

[6]  Shui-Tong Lee,et al.  Semiconductor nanowires: synthesis, structure and properties , 2000 .

[7]  R. K. Pandey,et al.  Synthesis and characterization of Sb-doped CdTe films , 2002 .

[8]  W. Ronald Fawcett,et al.  The Structural Characterization of Cadmium Sulfide Films Grown by Cathodic Electrodeposition , 1981 .

[9]  C. R. Martin,et al.  Electrochemical Fabrication of Cadmium Chalcogenide Microdiode Arrays , 1993 .

[10]  O. Oda,et al.  Recent developments in II–VI substrates , 1999 .

[11]  Electrical Properties of Nanometer-Sized Schottky Contacts on n-GaAs and n-InP Formed by in Situ Electrochemical Process , 2000 .

[12]  R. L. Jones,et al.  Growth of vertically self-organized InGaAs quantum dots with narrow inhomogeneous broadening , 2000 .

[13]  David T. Crouse,et al.  Self-ordered pore structure of anodized aluminum on silicon and pattern transfer , 2000 .

[14]  Manijeh Razeghi,et al.  Development of quantum well infrared photodetectors at the center for quantum devices , 2001 .

[15]  Arthur J. Nozik,et al.  Synthesis, structure, and optical properties of colloidal GaN quantum dots , 1999 .

[16]  C. Ferekides,et al.  Thin‐film CdS/CdTe solar cell with 15.8% efficiency , 1993 .

[17]  Dongsheng Xu,et al.  Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates , 2000 .

[18]  Neil C. Greenham,et al.  PHOTOINDUCED ELECTRON TRANSFER FROM CONJUGATED POLYMERS TO CDSE NANOCRYSTALS , 1999 .

[19]  S. Jenekhe,et al.  Semiconducting polymer quantum wires , 1997 .

[20]  Martin Moskovits,et al.  Field emitters based on porous aluminum oxide templates , 1999 .

[21]  A. Nozik,et al.  Colloidal Quantum Dots of III-V Semiconductors , 1998 .

[22]  A. Alivisatos,et al.  Structural Disorder in Colloidal InAs and CdSe Nanocrystals Observed by X-Ray Absorption Near-Edge Spectroscopy , 1999 .

[23]  V. Birss,et al.  Characterization of porous aluminum oxide films by metal electrodeposition , 1997 .

[24]  Xuesong Shi,et al.  Preparation of II-VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates , 2000 .

[25]  Nonlithographic nanowire-array tunnel device: Fabrication, zero-bias anomalies, and Coulomb blockade , 1998 .

[26]  Vidmantas Gulbinas,et al.  Optical nonlinearities of glass doped with PbS nanocrystals , 2000 .

[27]  R. Fischer,et al.  Confinement of CdSe Nanoparticles Inside MCM‐41 , 2000 .

[28]  Martin Moskovits,et al.  Synthesis and resonance Raman spectroscopy of CdS nano-wire arrays , 1996 .

[29]  Martin Moskovits,et al.  Nonlithographic nano-wire arrays: fabrication, physics, and device applications , 1996 .

[30]  Xuesong Shi,et al.  Electrochemical Preparation of CdSe Nanowire Arrays , 2000 .

[31]  Vaidya Nathan,et al.  Materials and process issues in the fabrication of high-performance HgCdTe infrared detectors , 1999, Photonics West.

[32]  S. Krishna,et al.  High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  Pallab Bhattacharya,et al.  Room-temperature far-infrared emission from a self-organized InGaAs/GaAs quantum-dot laser , 2000 .

[34]  R. Nötzel,et al.  Uniform Quantum Wire and Quantum Dot Arrays by Natural Self-Faceting on Patterned Substrates , 1999 .

[35]  A. Rogach,et al.  Development of IR-emitting colloidal II-VI quantum-dot materials , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  W. Faschinger Doping and contacting of wide gap II–VI compounds , 1999 .

[37]  S. Mcginnis,et al.  The Fabrication of Semiconductor Nanostructure Arrays on a Silicon Substrate Using an Anodized Aluminum Template , 1996 .

[38]  M. Crouse Enabling one-dimensional nanostructured materials through electrochemistry with novel template development: An application towards monocrystalline nanowires of cadmium sulfide , 2003 .

[39]  Antoni Rogalski Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long-wavelength focal plane arrays , 1999, Material Science and Material Properties for Infrared Optics.