Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces [Invited]

Metasurface optics is a promising candidate for realizing the next generation of miniaturized optical components. Unlike refractive optics, these devices modify light over a wavelength-scale thickness, changing the phase, amplitude, and polarization. This review details recent developments and state-of-the-art metasurfaces realized using silicon nitride. We emphasize this material as to date it has the lowest refractive index with which metasurfaces have been experimentally demonstrated. The wide band gap of silicon nitride enables reduced absorption over a broad wavelength range relative to its higher index counterparts, providing a CMOS-compatible platform for producing a variety of high efficiency metasurface elements and systems.

[1]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[2]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[3]  Arka Majumdar,et al.  Inverse design of optical elements based on arrays of dielectric spheres. , 2018, Applied optics.

[4]  Andrei Faraon,et al.  Wavefront shaping with disorder-engineered metasurfaces , 2017, Nature Photonics.

[5]  M. Bajcsy,et al.  Fabry-Pérot Cavity Formed with Dielectric Metasurfaces in a Hollow-Core Fiber , 2017, 1802.03456.

[6]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[7]  Kari Pulli,et al.  FlexISP , 2014, ACM Trans. Graph..

[8]  Yongkeun Park,et al.  Subwavelength light focusing using random nanoparticles , 2013, Nature Photonics.

[9]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[10]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[11]  Ye Feng Yu,et al.  High‐transmission dielectric metasurface with 2π phase control at visible wavelengths , 2015 .

[12]  Arka Majumdar,et al.  Low contrast dielectric metasurface optics , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[13]  I. Vellekoop,et al.  Scattered light fluorescence microscopy: imaging through turbid layers. , 2010, Optics letters.

[14]  J R Leger,et al.  Diffractive optical element for mode shaping of a Nd:YAG laser. , 1994, Optics letters.

[15]  Shanhui Fan,et al.  S4 : A free electromagnetic solver for layered periodic structures , 2012, Comput. Phys. Commun..

[16]  Michael I. Mishchenko,et al.  Calculation of the T matrix and the scattering matrix for ensembles of spheres , 1996 .

[17]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[18]  Arka Majumdar,et al.  Flat metaform near-eye visor. , 2017, Applied optics.

[19]  Andrei Faraon,et al.  Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations , 2016, Nature Communications.

[20]  Jingbo Sun,et al.  High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode. , 2015, Nano letters.

[21]  Wei Ting Chen,et al.  Polarization-Insensitive Metalenses at Visible Wavelengths. , 2016, Nano letters.

[22]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[23]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[24]  Edward R. Dowski,et al.  A New Paradigm for Imaging Systems , 2002, PICS.

[25]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[26]  Jianji Yang,et al.  Analysis of material selection on dielectric metasurface performance. , 2017, Optics express.

[27]  Sylvain Gigan,et al.  Point-spread-function engineering through a complex medium , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[28]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[29]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[30]  P. R. West,et al.  All-dielectric Subwavelength Metasurface Focusing Lens References and Links , 2022 .

[31]  Weijian Yang,et al.  High-contrast gratings for integrated optoelectronics , 2012 .

[32]  Marco Fiorentino,et al.  Sub-Wavelength Grating Lenses With a Twist , 2014, IEEE Photonics Technology Letters.

[33]  Din Ping Tsai,et al.  GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. , 2017, Nano letters.

[34]  Stefano Cabrini,et al.  Optical metasurfaces for high angle steering at visible wavelengths , 2017, Scientific Reports.

[35]  Marco Fiorentino,et al.  A multi-directional backlight for a wide-angle, glasses-free three-dimensional display , 2013, Nature.

[36]  Andrei Faraon,et al.  Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. , 2015, Optics express.

[37]  P. Chavel,et al.  High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm. , 1998, Optics letters.

[38]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[39]  C. Chang-Hasnain,et al.  High contrast gratings for integrated optoelectronics , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[40]  Daniele Ancora,et al.  Tailored light sheets through opaque cylindrical lenses , 2016 .

[41]  Vadim Karagodsky,et al.  Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. , 2010, Optics express.

[42]  S. Gigan,et al.  Point-spread-function engineering through a complex medium , 2016, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[43]  Uli Lemmer,et al.  CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres , 2017, 1706.02145.

[44]  Jongchan Park,et al.  Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields , 2017, Nature Photonics.

[45]  Federico Capasso,et al.  Achromatic metalens over 60 nm bandwidth in the visible , 2017, CLEO 2017.

[46]  Sailing He,et al.  Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. , 2015, ACS nano.

[47]  A. Dupuy,et al.  Unprecedented Electro‐Optic Performance in Lead‐Free Transparent Ceramics , 2016, Advanced materials.

[48]  Y L Xu,et al.  Electromagnetic scattering by an aggregate of spheres. , 1995, Applied optics.

[49]  Michael S Feld,et al.  Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. , 2011, Physical review letters.

[50]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[51]  Edwin Yue-Bun Pun,et al.  Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. , 2013, Nano letters.

[52]  A. Mosk,et al.  Exploiting disorder for perfect focusing , 2009, 0910.0873.

[53]  Ebrahim Karimi,et al.  Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface , 2014, Light: Science & Applications.

[54]  Arka Majumdar,et al.  Metasurface optics for full-color computational imaging , 2018, Science Advances.

[55]  Z. Bomzon,et al.  Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. , 2002, Optics letters.

[56]  Wolfgang Heidrich,et al.  High-quality computational imaging through simple lenses , 2013, TOGS.

[57]  S. Popoff,et al.  Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. , 2009, Physical review letters.

[58]  Wonjun Choi,et al.  Transmission matrix of a scattering medium and its applications in biophotonics. , 2015, Optics express.

[59]  Arka Majumdar,et al.  Role of refractive index in metalens performance. , 2018, Applied optics.

[60]  Igal Brener,et al.  Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances , 2014, CLEO 2014.

[61]  Tae Joong Eom,et al.  Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning , 2016, Scientific Reports.

[62]  Y. N. Ahammed,et al.  A study on the Moss relation , 1995 .

[63]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[64]  Metasurface Freeform Nanophotonics , 2016, Scientific Reports.

[65]  S. Popoff,et al.  Controlling light through optical disordered media: transmission matrix approach , 2011, 1107.5285.

[66]  Arka Majumdar,et al.  Varifocal zoom imaging with large area focal length adjustable metalenses , 2018, Optica.

[67]  E. G. van Putten,et al.  Scattering lens resolves sub-100 nm structures with visible light. , 2011, Physical review letters.

[68]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[69]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[70]  Jianwen Dong,et al.  Silicon nitride metalenses for unpolarized high-NA visible imaging , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[71]  Federico Capasso,et al.  A broadband achromatic metalens for focusing and imaging in the visible , 2018, Nature Nanotechnology.

[72]  Igal Brener,et al.  Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control. , 2015, Nano letters.

[73]  D. Werner,et al.  Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates , 2014, Scientific Reports.

[74]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[75]  Philippe Lalanne,et al.  Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff , 1999 .

[76]  Erez Hasman,et al.  Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements. , 2004, Optics letters.

[77]  Federico Capasso,et al.  Topology-Optimized Multilayered Metaoptics , 2017, 1706.06715.

[78]  R. Piestun,et al.  Aperiodic Volume Optics , 2010 .

[79]  W T Cathey,et al.  Control of chromatic focal shift through wave-front coding. , 1998, Applied optics.