KP hierarchy for the cyclic quiver

We introduce a generalisation of the KP hierarchy, closely related to the cyclic quiver and the Cherednik algebra $H_k(\mathbb Z_m)$. This hierarchy depends on $m$ parameters (one of which can be eliminated), with the usual KP hierarchy corresponding to the $m=1$ case. Generalising the result of G. Wilson, we show that our hierarchy admits solutions parameterised by suitable quiver varieties. The pole dynamics for these solutions is shown to be governed by the classical Calogero-Moser system for the wreath-product $\mathbb Z_m\wr S_n$ and its new spin version. These results are further extended to the case of the multi-component hierarchy.

[1]  F. Eshmatov $DG$-models of projective modules and Nakajima quiver varieties , 2006, math/0604011.

[2]  O. Chalykh,et al.  A∞-modules and Calogero-Moser spaces , 2007 .

[3]  M. Jimbo,et al.  TRANSFORMATION GROUPS FOR SOLITON EQUATIONS , 1982 .

[4]  Charles F. Dunkl,et al.  Differential-difference operators associated to reflection groups , 1989 .

[5]  T. Hodges Noncommutative Deformations of Type-A Kleinian Singularities , 1993 .

[6]  A. Perelomov,et al.  Completely integrable Hamiltonian systems connected with semisimple Lie algebras , 1976 .

[7]  Pavel Etingof,et al.  Calogero-Moser Systems and Representation Theory , 2007 .

[8]  W. Crawley-Boevey Poisson structures on moduli spaces of representations , 2011 .

[9]  A. Bordner,et al.  Calogero-Moser Models. I: A New Formulation , 1998, hep-th/9805106.

[10]  P. Etingof,et al.  On elliptic Calogero-Moser systems for complex crystallographic reflection groups , 2010, 1003.4689.

[11]  William Crawley-Boevey,et al.  NONCOMMUTATIVE DEFORMATIONS OF KLEINIAN SINGULARITIES , 1998 .

[12]  Pavel Etingof,et al.  Lecture notes on Cherednik algebras , 2010, 1001.0432.

[13]  C. Young,et al.  Cyclotomic Gaudin Models: Construction and Bethe Ansatz , 2014, 1409.6937.

[14]  A. Perelomov,et al.  Classical integrable finite-dimensional systems related to Lie algebras , 1981 .

[15]  T. Hermsen,et al.  A generalisation of the Calogero-Moser system , 1984 .

[16]  E. Rains,et al.  On Algebraically Integrable Differential Operators on an Elliptic Curve , 2010, 1011.6410.

[17]  N. Turok,et al.  The Symmetries of Dynkin Diagrams and the Reduction of Toda Field Equations , 1983 .

[18]  Bispectral Algebras of Commuting Ordinary Differential Operators , 1996, q-alg/9602011.

[19]  Stratifications of Marsden–Weinstein reductions for representations of quivers and deformations of symplectic quotient singularities , 2006, math/0603562.

[20]  C. F. Dunkl,et al.  Dunkl operators for complex reflection groups , 2001 .

[21]  Igor Krichever,et al.  Rational solutions of the Kadomtsev — Petviashvili equation and integrable systems of N particles on a line , 1978 .

[22]  F. Grünbaum,et al.  Differential equations in the spectral parameter , 1986 .

[23]  G. Wilson,et al.  Ideal Classes of the Weyl Algebra and Noncommutative Projective Geometry , 2001, math/0104248.

[24]  Wee Liang Gan,et al.  Harish–Chandra homomorphisms and symplectic reflection algebras for wreath-products , 2005, math/0511489.

[25]  G. Wilson Collisions of Calogero-Moser particles and an adelic Grassmannian (With an Appendix by I.G. Macdonald) , 1998 .

[26]  G. Heckman A Remark on the Dunkl Differential—Difference Operators , 1991 .

[27]  Yuri Berest,et al.  Recollement of Deformed Preprojective Algebras and the Calogero-Moser Correspondence , 2007, 0706.3006.

[28]  V. Kac Infinite root systems, representations of graphs and invariant theory , 1980 .

[29]  J. Marsden,et al.  Reduction of symplectic manifolds with symmetry , 1974 .

[30]  Victor Ginzburg,et al.  Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism , 2000 .

[31]  W. Crawley-Boevey Geometry of the Moment Map for Representations of Quivers , 2001, Compositio Mathematica.

[32]  G. C. Shephard,et al.  Finite Unitary Reflection Groups , 1954, Canadian Journal of Mathematics.

[33]  D. V. Choodnovsky,et al.  Pole expansions of nonlinear partial differential equations , 1977 .

[34]  L. Dickey Soliton Equations and Hamiltonian Systems , 2003 .

[35]  Mikio Sato Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold , 1983 .

[36]  Calogero-Moser Models. II Symmetries and Foldings , 1998, hep-th/9809068.

[37]  Necklace Lie algebras and noncommutative symplectic geometry , 2000, math/0010030.

[38]  W. Crawley-Boevey Decomposition of Marsden–Weinstein Reductions for Representations of Quivers , 2000, Compositio Mathematica.

[39]  Quiver Varieties and a Noncommutative P2 , 2001, Compositio Mathematica.

[40]  M. Bergh,et al.  A new algebraic approach to microlocalization of filtered rings , 1989 .

[41]  Noncommutative Instantons and Twistor Transform , 2000, hep-th/0002193.

[42]  A Class of Integrable Spin Calogero-Moser Systems , 2001, math-ph/0506026.

[43]  H. McKean,et al.  Rational and elliptic solutions of the korteweg‐de vries equation and a related many‐body problem , 1977 .

[44]  A. Varchenko,et al.  Bethe Algebra of Gaudin Model, Calogero–Moser Space, and Cherednik Algebra , 2009, 0906.5185.

[45]  R. Bielawski,et al.  On the symplectic structure of instanton moduli spaces , 2008, 0812.4918.

[46]  A. Kasman,et al.  Spin Calogero Particles and Bispectral Solutions of the Matrix KP Hierarchy , 2008, 0806.2613.

[47]  M. Bergh Double Poisson algebras , 2004, math/0410528.

[48]  Automorphisms and ideals of the Weyl algebra , 2000, math/0102190.