Learning EEG synchronization patterns for epileptic seizure prediction using bag-of-wave features

Epileptic seizure prediction has the potential to promote epilepsy care and treatment. However, the seizure prediction accuracy does not satisfy the application requirements. In this paper, a novel framework for seizure prediction is proposed by learning synchronization patterns. For better representation, bag-of-wave (BoWav) feature extraction is proposed for modeling synchronization pattern of electroencephalogram (EEG) signal. An interictal codebook and preictal codebook, representing the local segments, are constructed by a clustering algorithm. Within a period of EEG signal on all electrodes, local segments are projected onto the learned codebooks. The proposed feature expresses the synchronization pattern of EEG signal with the histogram feature. Moreover, extreme learning machine (ELM) is used to classify the sequence of features. Experiments are performed on the Kaggle seizure prediction challenge dataset and the CHB-MIT dataset. The experiment on the CHB-MIT achieves a sensitivity of 88.24% and a false prediction rate per hour of 0.25.

[1]  Benjamin H. Brinkmann,et al.  Towards Improved Design and Evaluation of Epileptic Seizure Predictors , 2018, IEEE Transactions on Biomedical Engineering.

[2]  Brian Litt,et al.  Virtual Cortical Resection Reveals Push-Pull Network Control Preceding Seizure Evolution , 2016, Neuron.

[3]  David W. Corne,et al.  Predicting Epileptic Seizures in Advance , 2014, PloS one.

[4]  Guang-Bin Huang,et al.  Extreme Learning Machine for Multilayer Perceptron , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[5]  Kwang-Hyun Cho,et al.  Predicting epileptic seizures from scalp EEG based on attractor state analysis , 2017, Comput. Methods Programs Biomed..

[6]  E. Halgren,et al.  Single-neuron dynamics in human focal epilepsy , 2011, Nature Neuroscience.

[7]  Qiaoli Yang,et al.  Chaos feature study in fractional Fourier domain for preictal prediction of epileptic seizure , 2017, Neurocomputing.

[8]  Mahmoud I. Khalil,et al.  Epileptic seizure prediction using zero-crossings analysis of EEG wavelet detail coefficients , 2016, 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).

[9]  Yang Zheng,et al.  Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition , 2014, Clinical Neurophysiology.

[10]  A. Kraskov,et al.  On the predictability of epileptic seizures , 2005, Clinical Neurophysiology.

[11]  Mojtaba Bandarabadi,et al.  Epileptic seizure prediction using relative spectral power features , 2015, Clinical Neurophysiology.

[12]  Timothy G. Constandinou,et al.  Ngram-Derived Pattern Recognition for the Detection and Prediction of Epileptic Seizures , 2014, PloS one.

[13]  P. Rajna,et al.  Hungarian multicentre epidemiologic study of the warning and initial symptoms (prodrome, aura) of epileptic seizures , 1997, Seizure.

[14]  Andreas Schulze-Bonhage,et al.  Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction. , 2006, Chaos.

[15]  Shufang Li,et al.  Seizure Prediction Using Spike Rate of Intracranial EEG , 2013, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[16]  Reza Tafreshi,et al.  Predicting Epileptic Seizures in Scalp EEG Based on a Variational Bayesian Gaussian Mixture Model of Zero-Crossing Intervals , 2013, IEEE Transactions on Biomedical Engineering.

[17]  Huchuan Lu,et al.  Saliency detection via extreme learning machine , 2016, Neurocomputing.

[18]  Hongming Zhou,et al.  Extreme Learning Machine for Regression and Multiclass Classification , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[19]  Saeid Nahavandi,et al.  Bag-of-words representation for biomedical time series classification , 2012, Biomed. Signal Process. Control..

[20]  Cao Xiao,et al.  An Adaptive Pattern Learning Framework to Personalize Online Seizure Prediction , 2017, IEEE Transactions on Big Data.

[21]  Cheng Wu,et al.  Semi-Supervised and Unsupervised Extreme Learning Machines , 2014, IEEE Transactions on Cybernetics.

[22]  Yong Zhang,et al.  Sequential active learning using meta-cognitive extreme learning machine , 2016, Neurocomputing.

[23]  Hongming Zhou,et al.  Extreme Learning Machines [Trends & Controversies] , 2013 .

[24]  Bin He,et al.  Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach , 2014, Clinical Neurophysiology.

[25]  Yann LeCun,et al.  Classification of patterns of EEG synchronization for seizure prediction , 2009, Clinical Neurophysiology.

[26]  J. Gotman,et al.  Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity , 2013, Clinical Neurophysiology.

[27]  Cuntai Guan,et al.  Prediction and detection of seizures from simultaneous thalamic and scalp electroencephalography recordings. , 2016, Journal of neurosurgery.

[28]  Brent Lance,et al.  A bag-of-words model for task-load prediction from EEG in complex environments , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[29]  Chi-Man Vong,et al.  Local Receptive Fields Based Extreme Learning Machine , 2015, IEEE Computational Intelligence Magazine.

[30]  Bin He,et al.  A rule-based seizure prediction method for focal neocortical epilepsy , 2012, Clinical Neurophysiology.

[31]  Deng-Shan Shiau,et al.  Predictability Analysis for an Automated Seizure Prediction Algorithm , 2006, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[32]  A. Schulze-Bonhage,et al.  The seizure prediction characteristic: a general framework to assess and compare seizure prediction methods , 2003, Epilepsy & Behavior.

[33]  Benjamin H. Brinkmann,et al.  SVM-Based System for Prediction of Epileptic Seizures From iEEG Signal , 2017, IEEE Transactions on Biomedical Engineering.

[34]  Dipankar Das,et al.  Enhanced SenticNet with Affective Labels for Concept-Based Opinion Mining , 2013, IEEE Intelligent Systems.

[35]  F. Mormann,et al.  Seizure prediction: the long and winding road. , 2007, Brain : a journal of neurology.

[36]  S. Shorvon,et al.  Longitudinal cohort studies of the prognosis of epilepsy: contribution of the National General Practice Study of Epilepsy and other studies. , 2013, Brain : a journal of neurology.

[37]  Jiawei Yang,et al.  A Generalised Seizure Prediction with Convolutional Neural Networks for Intracranial and Scalp Electroencephalogram Data Analysis , 2017, ArXiv.

[38]  Ali H. Shoeb,et al.  Application of machine learning to epileptic seizure onset detection and treatment , 2009 .

[39]  J. Martinerie,et al.  Characterizing Neurodynamic Changes Before Seizures , 2001, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[40]  J P Lieb,et al.  Temporo-spatial patterns of pre-ictal spike activity in human temporal lobe epilepsy. , 1983, Electroencephalography and clinical neurophysiology.

[41]  A. Schulze-Bonhage,et al.  Seizure anticipation by patients with focal and generalized epilepsy: A multicentre assessment of premonitory symptoms , 2006, Epilepsy Research.

[42]  Manoranjan Paul,et al.  Seizure Prediction Using Undulated Global and Local Features , 2017, IEEE Transactions on Biomedical Engineering.

[43]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[44]  Amir Homayoun Jafari,et al.  Prediction of epileptic seizures from EEG using analysis of ictal rules on Poincaré plane , 2017, Comput. Methods Programs Biomed..

[45]  Brian Litt,et al.  Forecasting Seizures in Dogs with Naturally Occurring Epilepsy , 2014, PloS one.

[46]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[47]  C. Halpern,et al.  Responsive Direct Brain Stimulation for Epilepsy. , 2016, Neurosurgery clinics of North America.

[48]  Brian Litt,et al.  Virtual cortical resection reveals push-pull network control preceding seizure evolution , 2016 .

[49]  Jesús Barba,et al.  Non-linear classifiers applied to EEG analysis for epilepsy seizure detection , 2017, Expert Syst. Appl..

[50]  Victor C. M. Leung,et al.  Extreme Learning Machines [Trends & Controversies] , 2013, IEEE Intelligent Systems.

[51]  James R. Williamson,et al.  Seizure prediction using EEG spatiotemporal correlation structure , 2012, Epilepsy & Behavior.

[52]  Theoden Netoff,et al.  Seizure prediction with spectral power of EEG using cost‐sensitive support vector machines , 2011, Epilepsia.

[53]  Brian Litt,et al.  Crowdsourcing reproducible seizure forecasting in human and canine epilepsy , 2016, Brain : a journal of neurology.

[54]  F. Mormann,et al.  Seizure prediction: making mileage on the long and winding road. , 2016, Brain : a journal of neurology.

[55]  A. Burkitt,et al.  Patient-specific bivariate-synchrony-based seizure prediction for short prediction horizons , 2010, Epilepsy Research.

[56]  J. Gotman,et al.  Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology. , 2014, Brain : a journal of neurology.

[57]  Bin He,et al.  Seizure prediction in patients with focal hippocampal epilepsy , 2017, Clinical Neurophysiology.

[58]  Gahangir Hossain,et al.  Seizure Prediction and Detection via Phase and Amplitude Lock Values , 2016, Front. Hum. Neurosci..

[59]  Keshab K. Parhi,et al.  Low-Complexity Seizure Prediction From iEEG/sEEG Using Spectral Power and Ratios of Spectral Power , 2016, IEEE Transactions on Biomedical Circuits and Systems.