An object oriented implementation of the Yeadon human inertia model

We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input.

[1]  Jason K. Moore,et al.  yeadon-1.2.1 , 2015 .

[2]  Jason K. Moore,et al.  yeadon-1.2.0 , 2014 .

[3]  Mont Hubbard,et al.  Constrained Multibody Dynamics With Python: From Symbolic Equation Generation to Publication , 2013 .

[4]  Jason K. Moore,et al.  Human Control of a Bicycle , 2012 .

[5]  Scott Lakin Jones,et al.  To Be Human , 2011 .

[6]  Gaël Varoquaux,et al.  Mayavi: 3D Visualization of Scientific Data , 2010, Computing in Science & Engineering.

[7]  Arend L. Schwab,et al.  Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[9]  S J Park,et al.  Anthropometric and biomechanical characteristics on body segments of Koreans. , 1999, Applied human science : journal of physiological anthropology.

[10]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[11]  John T. McConville,et al.  INVESTIGATION OF INERTIAL PROPERTIES OF THE HUMAN BODY , 1975 .

[12]  C. E. Clauser,et al.  Weight, volume, and center of mass of segments of the human body , 1969 .

[13]  W. T. Dempster,et al.  SPACE REQUIREMENTS OF THE SEATED OPERATOR, GEOMETRICAL, KINEMATIC, AND MECHANICAL ASPECTS OF THE BODY WITH SPECIAL REFERENCE TO THE LIMBS , 1955 .

[14]  Gaël Varoquaux,et al.  Mayavi: a package for 3D visualization of scientific data , 2010, ArXiv.

[15]  I. Griffiths,et al.  Measuring the moment of inertia of the human body by a rotating platform method , 2005 .

[16]  R. A. Wehage,et al.  Constrained Multibody Dynamics , 1994 .

[17]  M. Yeadon The simulation of aerial movement--I. The determination of orientation angles from film data. , 1990, Journal of biomechanics.

[18]  M. Yeadon The simulation of aerial movement--III. The determination of the angular momentum of the human body. , 1990, Journal of biomechanics.

[19]  F. D. Hales,et al.  The simulation of aerial movement--IV. A computer simulation model. , 1990, Journal of biomechanics.

[20]  M. Yeadon The simulation of aerial movement--II. A mathematical inertia model of the human body. , 1990, Journal of biomechanics.

[21]  Maurice R. Yeadon,et al.  The mechanics of twisting somersaults , 1984 .

[22]  Vladimir M. Zatsiorsky,et al.  The Mass and Inertia Characteristics of the Main Segments of the Human Body , 1983 .

[23]  R. Jensen,et al.  Estimation of the biomechanical properties of three body types using a photogrammetric method. , 1978, Journal of biomechanics.

[24]  John Smith Computer simulation models , 1968 .