Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models

ABSTRACT We discuss efficient Bayesian estimation of dynamic covariance matrices in multivariate time series through a factor stochastic volatility model. In particular, we propose two interweaving strategies to substantially accelerate convergence and mixing of standard MCMC approaches. Similar to marginal data augmentation techniques, the proposed acceleration procedures exploit nonidentifiability issues which frequently arise in factor models. Our new interweaving strategies are easy to implement and come at almost no extra computational cost; nevertheless, they can boost estimation efficiency by several orders of magnitude as is shown in extensive simulation studies. To conclude, the application of our algorithm to a 26-dimensional exchange rate dataset illustrates the superior performance of the new approach for real-world data. Supplementary materials for this article are available online.

[1]  Wolfgang Hörmann,et al.  Generating generalized inverse Gaussian random variates , 2013, Statistics and Computing.

[2]  James E. Dunn,et al.  A note on a sufficiency condition for uniqueness of a restricted factor matrix , 1973 .

[3]  S. Frühwirth-Schnatter,et al.  Analysis of Exchange Rates via Multivariate Bayesian Factor Stochastic Volatility Models , 2014 .

[4]  Federico Nardari,et al.  Bayesian Analysis of Linear Factor Models with Latent Factors, Multivariate Stochastic Volatility, and Apt Pricing Restrictions , 2007 .

[5]  J. Geweke,et al.  Measuring the pricing error of the arbitrage pricing theory , 1996 .

[6]  Gael M. Martin,et al.  Parameterisation and efficient MCMC estimation of non-Gaussian state space models , 2008, Comput. Stat. Data Anal..

[7]  M. Pitt,et al.  Likelihood analysis of non-Gaussian measurement time series , 1997 .

[8]  Carlos M. Carvalho,et al.  Factor stochastic volatility with time varying loadings and Markov switching regimes , 2007 .

[9]  J. Richard,et al.  Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models , 2006 .

[10]  Yaming Yu,et al.  To Center or Not to Center: That Is Not the Question—An Ancillarity–Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency , 2011 .

[11]  Nikolas Kantas,et al.  Bayesian parameter inference for partially observed stopped processes , 2012, Stat. Comput..

[12]  Conrad Sanderson,et al.  Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Computationally Intensive Experiments , 2010 .

[13]  J. Heckman,et al.  Bayesian Exploratory Factor Analysis , 2014, Journal of econometrics.

[14]  Gregor Kastner Efficient Bayesian Inference for Stochastic Volatility (SV)Models , 2016 .

[15]  M. Pitt,et al.  Time Varying Covariances: A Factor Stochastic Volatility Approach (with discussion , 1998 .

[16]  Matthew Wayne Simpson,et al.  Application of Interweaving in DLMs to an Exchange and Specialization Experiment , 2015 .

[17]  Christian Aßmann,et al.  Bayesian analysis of static and dynamic factor models: An ex-post approach towards the rotation problem , 2016 .

[18]  Gregor Kastner,et al.  Dealing with Stochastic Volatility in Time Series Using the R Package stochvol , 2016, 1906.12134.

[19]  Xiao-Li Meng,et al.  The Art of Data Augmentation , 2001 .

[20]  Gareth O. Roberts,et al.  A General Framework for the Parametrization of Hierarchical Models , 2007, 0708.3797.

[21]  N. Shephard,et al.  Analysis of high dimensional multivariate stochastic volatility models , 2006 .

[22]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[23]  Michael A. West,et al.  BAYESIAN MODEL ASSESSMENT IN FACTOR ANALYSIS , 2004 .

[24]  Yufeng Han,et al.  Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model , 2005 .

[25]  Sylvia Fruhwirth-Schnatter,et al.  Achieving shrinkage in a time-varying parameter model framework , 2016, Journal of Econometrics.

[26]  S. Taylor Financial Returns Modelled by the Product of Two Stochastic Processes , 1961 .

[27]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[28]  Yasuhiro Omori,et al.  Portfolio Optimization Using Dynamic Factor and Stochastic Volatility: Evidence on Fat‐Tailed Errors and Leverage , 2017 .

[29]  M. West,et al.  Dynamic Factor Volatility Modeling: A Bayesian Latent Threshold Approach , 2013 .

[30]  Siem Jan Koopman,et al.  Monte Carlo Likelihood Estimation for Three Multivariate Stochastic Volatility Models , 2006 .

[31]  David B Dunson,et al.  Default Prior Distributions and Efficient Posterior Computation in Bayesian Factor Analysis , 2009, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[32]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[33]  S. Ross The arbitrage theory of capital asset pricing , 1976 .

[34]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[35]  N. Shephard,et al.  Stochastic volatility with leverage: Fast and efficient likelihood inference , 2007 .

[36]  G. Kastner Sparse Bayesian time-varying covariance estimation in many dimensions , 2016, Journal of Econometrics.

[37]  M. West,et al.  Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models , 2014 .

[38]  N. Shephard Statistical aspects of ARCH and stochastic volatility , 1996 .

[39]  N. Shephard Partial non-Gaussian state space , 1994 .

[40]  Conrad Sanderson,et al.  RcppArmadillo: Accelerating R with high-performance C++ linear algebra , 2014, Comput. Stat. Data Anal..

[41]  Gregor Kastner,et al.  Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models , 2014, Comput. Stat. Data Anal..

[42]  Gabriele Fiorentini,et al.  Identification, Estimation and Testing of Conditionally Heteroskedastic Factor Models , 2001 .

[43]  Hedibert Freitas Lopes,et al.  Parsimonious Bayesian Factor Analysis when the Number of Factors is Unknown , 2010 .

[44]  Radford M. Neal,et al.  Ecient Bayesian inference for stochastic volatility models with ensemble MCMC methods , 2014, 1412.3013.

[45]  Vivekananda Roy,et al.  Interweaving Markov Chain Monte Carlo Strategies for Efficient Estimation of Dynamic Linear Models , 2017 .

[46]  S. Frühwirth-Schnatter,et al.  Stochastic model specification search for Gaussian and partial non-Gaussian state space models , 2010 .

[47]  Yufeng Han Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model , 2005 .

[48]  M. West,et al.  Bayesian Dynamic Factor Models and Portfolio Allocation , 2000 .

[49]  William J. McCausland,et al.  Simulation smoothing for state-space models: A computational efficiency analysis , 2011, Comput. Stat. Data Anal..

[50]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[51]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[52]  J. Lintner The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets: A Reply , 1969 .

[53]  Joshua C. C. Chan,et al.  The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling , 2015 .

[54]  J. Lintner THE VALUATION OF RISK ASSETS AND THE SELECTION OF RISKY INVESTMENTS IN STOCK PORTFOLIOS AND CAPITAL BUDGETS , 1965 .