Ghost Effect from Boltzmann Theory

Consider the limit $\varepsilon\rightarrow0$ of the steady Boltzmann problem \begin{align} v\cdot\nabla_x\mathfrak{F}=\varepsilon^{-1}Q[\mathfrak{F},\mathfrak{F}],\quad \mathfrak{F}\big|_{v\cdot n<0}=M_w\displaystyle\int_{v'\cdot n>0} \mathfrak{F}(v')|v'\cdot n|\mathrm{d}{v'}, \end{align} where $\displaystyle M_w(x_0,v):=\frac{1}{2\pi\big(T_w(x_0)\big)^2} \exp\bigg(-\frac{|v|^2}{2T_w(x_0)}\bigg)$ for $x_0\in\partial\Omega$ is the wall Maxwellian in the diffuse-reflection boundary condition. In the natural case of $|\nabla T_w|=O(1)$, for any constant $P>0$, the Hilbert expansion leads to \begin{align}\label{expansion} \mathfrak{F}\approx \mu+\varepsilon\bigg\{\mu\bigg(\rho_1+u_1\cdot v+T_1\frac{|v|^2-3T}{2}\bigg)-\mu^{\frac{1}{2}}\left(\mathscr{A}\cdot\frac{\nabla_xT}{2T^2}\right)\bigg\} \end{align} where $\displaystyle\mu(x,v):=\frac{\rho(x)}{\big(2\pi T(x)\big)^{\frac{3}{2}}} \exp\bigg(-\frac{|v|^2}{2T(x)}\bigg)$, and $(\rho,u_1,T)$ is determined by a Navier-Stokes-Fourier system with"ghost"effect. While it has been an intriguing outstanding mathematical problem to justify the ghost equations from Boltzmann kinetic theory, due to fundamental analytical challenges, such a ghost effect cannot be predicted by the classical fluid theory. We settle this open question in affirmative in the case of \begin{align}\label{assumption:boundary} |\nabla T_w|_{W^{3,\infty}}=o(1). \end{align}