Unique relationships between phages and endospore-forming hosts.

[1]  Xindan Wang,et al.  HBsu Is Required for the Initiation of DNA Replication in Bacillus subtilis , 2022, Journal of bacteriology.

[2]  Anja Poehlein,et al.  The Bacillus phage SPβ and its relatives: a temperate phage model system reveals new strains, species, prophage integration loci, conserved proteins and lysogeny management components. , 2022, Environmental microbiology.

[3]  Bing Liu,et al.  Bacteriophage protein Gp46 is a cross-species inhibitor of nucleoid-associated HU proteins , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Grossman,et al.  Interactions between mobile genetic elements: An anti-phage gene in an integrative and conjugative element protects host cells from predation by a temperate bacteriophage , 2022, PLoS genetics.

[5]  Jackson Luu,et al.  Nε-Lysine Acetylation of the Histone-Like Protein HBsu Regulates the Process of Sporulation and Affects the Resistance Properties of Bacillus subtilis Spores , 2022, Frontiers in Microbiology.

[6]  A. Eldar,et al.  Dormant phages communicate via arbitrium to control exit from lysogeny , 2021, Nature Microbiology.

[7]  D. Schwartz,et al.  Phage-Encoded Sigma Factors Alter Bacterial Dormancy , 2021, bioRxiv.

[8]  A. Marina,et al.  The arbitrium system controls prophage induction , 2021, Current Biology.

[9]  E. Westra,et al.  Interactions between bacterial and phage communities in natural environments , 2021, Nature Reviews Microbiology.

[10]  B. Scharf,et al.  Identification of Receptor Binding Proteins in Flagellotropic Agrobacterium Phage 7-7-1 , 2021, Viruses.

[11]  Carlos N. Lozano-Andrade,et al.  Phages carry interbacterial weapons encoded by biosynthetic gene clusters , 2021, Current Biology.

[12]  F. Rohwer,et al.  The landscape of lysogeny across microbial community density, diversity, and energetics. , 2021, Environmental microbiology.

[13]  R. Hermsen,et al.  Repeated outbreaks drive the evolution of bacteriophage communication , 2021, eLife.

[14]  K. Pogliano,et al.  Metabolic differentiation and intercellular nurturing underpin bacterial endospore formation , 2021, Science Advances.

[15]  G. Maróti,et al.  Impact of Rap-Phr system abundance on adaptation of Bacillus subtilis , 2020, Communications Biology.

[16]  Yihui Yuan,et al.  Novel spore lytic enzyme from a Bacillus phage leading to spore killing. , 2020, Enzyme and microbial technology.

[17]  P. Lopez,et al.  Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms , 2020, The ISME Journal.

[18]  T. Dubois,et al.  The sps Genes Encode an Original Legionaminic Acid Pathway Required for Crust Assembly in Bacillus subtilis , 2020, mBio.

[19]  M. Montresor,et al.  Density‐dependent mechanisms regulate spore formation in the diatom Chaetoceros socialis , 2020, Limnology and Oceanography Letters.

[20]  Baundauna Bose,et al.  Pervasive prophage recombination occurs during evolution of spore-forming Bacilli , 2020, The ISME Journal.

[21]  Ulrike Schulze,et al.  Phage liquid crystalline droplets form occlusive sheaths that encapsulate and protect infectious rod-shaped bacteria , 2020, Proceedings of the National Academy of Sciences.

[22]  G. V. van Wezel,et al.  Antibiotic production in Streptomyces is organized by a division of labor through terminal genomic differentiation , 2020, Science Advances.

[23]  P. Eichenberger,et al.  Compatibility of Site-Specific Recombination Units between Mobile Genetic Elements , 2019, iScience.

[24]  R. Xavier,et al.  Comprehensive analysis of chromosomal mobile genetic elements in the gut microbiome reveals phylum-level niche-adaptive gene pools , 2019, PloS one.

[25]  P. Turner,et al.  Decay and damage of therapeutic phage OMKO1 by environmental stressors , 2019, bioRxiv.

[26]  Maureen L. Coleman,et al.  Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems , 2019, Nature Reviews Microbiology.

[27]  F. Rodríguez-Valera,et al.  Trends of Microdiversity Reveal Depth-Dependent Evolutionary Strategies of Viruses in the Mediterranean , 2019, mSystems.

[28]  G. Cai,et al.  PiRV-2 stimulates sporulation in Phytophthora infestans. , 2019, Virus research.

[29]  A. Górski,et al.  Factors determining phage stability/activity: challenges in practical phage application , 2019, Expert review of anti-infective therapy.

[30]  C. Gätgens,et al.  Generation of a Prophage-Free Variant of the Fast-Growing Bacterium Vibrio natriegens , 2019, Applied and Environmental Microbiology.

[31]  D. Lereclus,et al.  Diversity of the Rap–Phr quorum-sensing systems in the Bacillus cereus group , 2019, Current Genetics.

[32]  Paula Ramos-Silva,et al.  From Root to Tips: Sporulation Evolution and Specialization in Bacillus subtilis and the Intestinal Pathogen Clostridioides difficile , 2019, bioRxiv.

[33]  W. Nicholson,et al.  Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions , 2019, Front. Microbiol..

[34]  P. Alvarez,et al.  Bacterial Endospores as Phage Genome Carriers and Protective Shells , 2018, Applied and Environmental Microbiology.

[35]  P. Graumann,et al.  Single-Molecule Tracking of DNA Translocases in Bacillus subtilis Reveals Strikingly Different Dynamics of SftA, SpoIIIE, and FtsA , 2018, Applied and Environmental Microbiology.

[36]  E. Villa,et al.  Chromosome Translocation Inflates Bacillus Forespores and Impacts Cellular Morphology , 2018, Cell.

[37]  S. Adhya,et al.  The Developmental Switch in Bacteriophage λ: A Critical Role of the Cro Protein. , 2018, Journal of molecular biology.

[38]  D. Mende,et al.  Bacteriophage Distributions and Temporal Variability in the Ocean’s Interior , 2017, mBio.

[39]  C. Bustamante,et al.  Mechanochemical coupling and bi-phasic force-velocity dependence in the ultra-fast ring ATPase SpoIIIE , 2017, bioRxiv.

[40]  Tsutomu Sato,et al.  A novel non prophage(-like) gene-intervening element within gerE that is reconstituted during sporulation in Bacillus cereus ATCC10987 , 2017, Scientific Reports.

[41]  Travis N. Mavrich,et al.  Bacteriophage evolution differs by host, lifestyle and genome , 2017, Nature Microbiology.

[42]  G. Maróti,et al.  De novo evolved interference competition promotes the spread of biofilm defectors , 2017, Nature Communications.

[43]  S. Abedon,et al.  Lysogeny in nature: mechanisms, impact and ecology of temperate phages , 2017, The ISME Journal.

[44]  Rotem Sorek,et al.  Communication between viruses guides lysis-lysogeny decisions , 2016, Nature.

[45]  S. Busby,et al.  Local and global regulation of transcription initiation in bacteria , 2016, Nature Reviews Microbiology.

[46]  Peizhe Sun,et al.  Inactivation of Escherichia coli, Bacteriophage MS2, and Bacillus Spores under UV/H2O2 and UV/Peroxydisulfate Advanced Disinfection Conditions. , 2016, Environmental science & technology.

[47]  Fernando H. Ramírez-Guadiana,et al.  The RecA-Dependent SOS Response Is Active and Required for Processing of DNA Damage during Bacillus subtilis Sporulation , 2016, PloS one.

[48]  R. Feiner,et al.  A new perspective on lysogeny: prophages as active regulatory switches of bacteria , 2015, Nature Reviews Microbiology.

[49]  C. Bustamante,et al.  Two-subunit DNA escort mechanism and inactive subunit bypass in an ultra-fast ring ATPase , 2015, eLife.

[50]  P. Eichenberger,et al.  Developmentally-Regulated Excision of the SPβ Prophage Reconstitutes a Gene Required for Spore Envelope Maturation in Bacillus subtilis , 2014, PLoS genetics.

[51]  M. Touchon,et al.  Pervasive domestication of defective prophages by bacteria , 2014, Proceedings of the National Academy of Sciences.

[52]  D. Muñoz-Espín,et al.  Phage phi 29 protein p1 promotes replication by associating with the FtsZ ring of the divisome in , 2013 .

[53]  P. Forterre The virocell concept and environmental microbiology , 2012, The ISME Journal.

[54]  I. Borovok,et al.  Prophage Excision Activates Listeria Competence Genes that Promote Phagosomal Escape and Virulence , 2012, Cell.

[55]  M. Loessner,et al.  Different genome structures and a fully functional sigK intervening element , 2012 .

[56]  Leighton J. Core,et al.  Bacillus subtilis RapA Phosphatase Domain Interaction with Its Substrate, Phosphorylated Spo0F, and Its Inhibitor, the PhrA Peptide , 2012, Journal of bacteriology.

[57]  Douglas E. Smith Single-molecule studies of viral DNA packaging. , 2011, Current opinion in virology.

[58]  A. Górski,et al.  The influence of external factors on bacteriophages—review , 2011, Folia Microbiologica.

[59]  G. Jensen,et al.  Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus , 2011, Proceedings of the National Academy of Sciences.

[60]  D. Dubnau,et al.  Structural Basis of Response Regulator Dephosphorylation by Rap Phosphatases , 2011, PLoS biology.

[61]  J. Lennon,et al.  Dormancy contributes to the maintenance of microbial diversity , 2010, Proceedings of the National Academy of Sciences.

[62]  J. Errington,et al.  A mechanism for cell cycle regulation of sporulation initiation in Bacillus subtilis. , 2009, Genes & development.

[63]  V. Fischetti,et al.  The Secret Life of the Anthrax Agent Bacillus anthracis: Bacteriophage-Mediated Ecological Adaptations , 2009, PloS one.

[64]  M. Salas,et al.  Differential Spo0A-mediated effects on transcription and replication of the related Bacillus subtilis phages Nf and ϕ29 explain their different behaviours in vivo , 2009, Nucleic acids research.

[65]  W. M. McShan,et al.  Phage-Associated Mutator Phenotype in Group A Streptococcus , 2008, Journal of bacteriology.

[66]  N. Cozzarelli,et al.  Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis , 2008, Nature Structural &Molecular Biology.

[67]  M. J. Jedrzejas,et al.  Structure of a protein–DNA complex essential for DNA protection in spores of Bacillus species , 2008, Proceedings of the National Academy of Sciences.

[68]  Derek N. Fuller,et al.  Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage phi29. , 2008, Biophysical journal.

[69]  A. Oppenheim,et al.  Phage Lambda CIII: A Protease Inhibitor Regulating the Lysis-Lysogeny Decision , 2007, PloS one.

[70]  A. Grossman,et al.  Modulation of the ComA-Dependent Quorum Response in Bacillus subtilis by Multiple Rap Proteins and Phr Peptides , 2006, Journal of bacteriology.

[71]  A. Sonenshein Bacteriophages: How Bacterial Spores Capture and Protect Phage DNA , 2006, Current Biology.

[72]  H. Murray,et al.  Molecular basis for the exploitation of spore formation as survival mechanism by virulent phage ϕ29 , 2005, The EMBO journal.

[73]  Shane T. Jensen,et al.  The Program of Gene Transcription for a Single Differentiating Cell Type during Sporulation in Bacillus subtilis , 2004, PLoS biology.

[74]  Philippe Kourilsky,et al.  Lysogenization by bacteriophage lambda , 1973, Molecular and General Genetics MGG.

[75]  A. Sonenshein,et al.  Efficient sporulation in Clostridium difficile requires disruption of the σK gene , 2003, Molecular microbiology.

[76]  C. Hayes,et al.  Protection of DNA by α/β-Type Small, Acid-Soluble Proteins from Bacillus subtilis Spores Against Cytosine Deamination† , 2002 .

[77]  Siegfried Scherer,et al.  Genomic Analysis of Clostridium perfringens Bacteriophage φ3626, Which Integrates into guaA and Possibly Affects Sporulation , 2002, Journal of bacteriology.

[78]  Terrance Leighton,et al.  Postexponential Regulation of sin Operon Expression in Bacillus subtilis , 2002, Journal of bacteriology.

[79]  Carlos Bustamante,et al.  Supplemental data for : The Bacteriophage ø 29 Portal Motor can Package DNA Against a Large Internal Force , 2001 .

[80]  I. Smith,et al.  An evolutionary link between sporulation and prophage induction in the structure of a repressor:anti-repressor complex. , 1998, Journal of molecular biology.

[81]  P. Setlow,et al.  Role of DNA repair in Bacillus subtilis spore resistance , 1996, Journal of bacteriology.

[82]  I. Mandic-Mulec,et al.  Copyright � 1995, American Society for Microbiology The Bacillus subtilis SinR Protein Is a Repressor of , 1995 .

[83]  M. Borucki,et al.  Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. , 1995, Science.

[84]  M. Bramucci,et al.  Bacteriophage-enhanced sporulation: comparison of spore-converting bacteriophages PMB12 and SP10 , 1990, Journal of bacteriology.

[85]  R. Losick,et al.  The Bacillus subtilis gene for the development transcription factor sigma K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. , 1990, Genes & development.

[86]  R. Losick,et al.  Chromosomal rearrangement generating a composite gene for a developmental transcription factor. , 1989, Science.

[87]  Robert Haselkorn,et al.  Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena , 1985, Nature.

[88]  D. Kinney,et al.  Analysis of Bacillus subtilis sporulation with spore-converting bacteriophage PMB12 , 1981, Journal of bacteriology.

[89]  C. B. Thorne,et al.  Converting bacteriophage for sporulation and crystal formation in Bacillus thuringiensis , 1979, Journal of bacteriology.

[90]  P. S. Lovett,et al.  Sporulation-converting bacteriophages for Bacillus pumilus , 1978, Journal of virology.

[91]  A. W. Stewart,et al.  Increased numbers of heat-resistnat spores produced by two strains of Clostridium perfringens bearing temperate phage s9. , 1977, Journal of general microbiology.

[92]  M. Bramucci,et al.  Bacteriophage PMB12 conversion of the sporulation defect in RNA polymerase mutants of Bacillus subtilis , 1977, Journal of virology.

[93]  M. Osburne,et al.  Behavior of a temperate bacteriophage in differentiating cells of Bacillus subtilis , 1976, Journal of virology.

[94]  R. Ivarie,et al.  DNA replication in bacteriophage ø29: the requirement of a viral-specfic product for association of ø29 DNA with the cell membrane of Bacillus amyloliquefaciens. , 1973, Virology.

[95]  A. L. Sonenshein Trapping of unreplicated phage DNA into spores of Bacillus subtilis and its stabilization against damage by 32P decay. , 1970, Virology.