Nanodiamond Dust and the Far-Ultraviolet Quasar Break

We explore the possibility that the steepening observed shortward of 1000 Å in the energy distribution of quasars may result from absorption by dust, being either intrinsic to the quasar environment or intergalactic. We find that a dust extinction curve consisting of nanodiamonds, composed of terrestrial cubic diamonds or with surface impurities as found in carbonaceous chondrite meteorites, such as Allende, is successful in reproducing the sharp break observed. The intergalactic dust model is partially successful in explaining the shape of the composite energy distribution but must be discarded in the end, as the amount of crystalline dust required is unreasonable and would imply an improbable fine-tuning among the dust formation processes. The alternative intrinsic dust model requires a mixture of both cubic diamonds and Allende nanodiamonds and provides a better fit of the UV break. The gas column densities implied are of the order 1020 cm-2, assuming solar metallicity for carbon and full depletion of carbon into dust. The absorption only occurs in the ultraviolet and is totally negligible in the visible. The minimum dust mass required is of the order ~0.003r M☉, where rpc is the distance in parsecs between the dust screen and the continuum source. The intrinsic dust model reproduces the flux rise observed around 660 Å in key quasar spectra quite well. We present indirect evidence of a shallow continuum break near 670 Å (18.5 eV), which would be intrinsic to the quasar continuum.

[1]  H. Nakano,et al.  Novel Routes for Diamond Formation in Interstellar Ices and Meteoritic Parent Bodies , 2005 .

[2]  Wei Zheng,et al.  Quasars and the Big Blue Bump , 2004, astro-ph/0409697.

[3]  A. Andersen,et al.  Optical data of meteoritic nano-diamonds from far-ultraviolet to far-infrared wavelengths , 2004, astro-ph/0408178.

[4]  University of Wyoming,et al.  A Composite Extreme Ultraviolet QSO Spectrum from the Far Ultraviolet Spectroscopic Explorer , 2004, astro-ph/0407203.

[5]  Bram AckeMario E. van den Ancker ISO spectroscopy of disks around Herbig Ae/Be stars , , 2004, astro-ph/0406050.

[6]  U. Wyoming,et al.  A Composite Extreme-Ultraviolet QSO Spectrum from FUSE , 2004, astro-ph/0403662.

[7]  C. Cheng,et al.  Surface C-H stretching features on meteoritic nanodiamonds , 2004 .

[8]  F. Matteucci,et al.  Erratum: Cosmic metal production and the mean metallicity of the Universe , 2004, astro-ph/0401462.

[9]  David Mouillet,et al.  Hot Very Small dust Grains in NGC 1068 seen in jet induced structures thanks to VLT/NACO adaptive optics , 2003, astro-ph/0312094.

[10]  K. Glazebrook,et al.  Constraints on a Universal Stellar Initial Mass Function from Ultraviolet to Near-Infrared Galaxy Luminosity Densities , 2003 .

[11]  K. Glazebrook,et al.  Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities , 2003, astro-ph/0304423.

[12]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[13]  L. Binette,et al.  Technique for Detecting Warm-Hot Intergalactic Gas in Quasar Ultraviolet Spectra , 2003, astro-ph/0301234.

[14]  Noah Brosch,et al.  The WSO: a world-class observatory for the ultraviolet , 2002, SPIE Astronomical Telescopes + Instrumentation.

[15]  A. Tielens,et al.  Nanodiamonds around HD 97048 and Elias 1 , 2002 .

[16]  A. F. Davidsen,et al.  The Rest-Frame Extreme-Ultraviolet Spectral Properties of Quasi-stellar Objects , 2001, astro-ph/0109531.

[17]  S. Friedman,et al.  Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer , 2001, Science.

[18]  W. Duley,et al.  Evolution of Carbon Dust in Aromatic Infrared Emission Sources: Formation of Nanodiamonds , 2001 .

[19]  O. Guillois,et al.  Diamond Infrared Emission Bands in Circumstellar Media , 1999 .

[20]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[21]  J. Baldwin,et al.  Do the Broad Emission Line Clouds See the Same Continuum That We See? , 1997, astro-ph/9704262.

[22]  A. Davidsen,et al.  A Composite HST Spectrum of Quasars , 1996, astro-ph/9608198.

[23]  J. Baldwin,et al.  High Metal Enrichments in Luminous Quasars , 1996 .

[24]  T. Miller Dust in the galactic environment , 1993 .

[25]  Ari Laor,et al.  Spectroscopic constraints on the properties of dust in active galactic nuclei , 1993 .

[26]  John E. Allen,et al.  Supernovae as sources of interstellar diamonds , 1992 .

[27]  F. Ferrini,et al.  Evolution of Dust Grains through a Hot Gaseous Halo , 1991 .

[28]  B. Draine,et al.  Properties, detectability and origin of interstellar diamonds in meteorites , 1989, Nature.

[29]  P. O’Brien,et al.  The ultraviolet continuum of quasars. I - The shape of the continuum, continuum reddening and intervening absorption. II - Continuum variability , 1988 .

[30]  G. Ferland,et al.  What heats the hot phase in active nuclei , 1987 .

[31]  A. Tielens,et al.  Shock processing of interstellar dust - Diamonds in the sky , 1987 .

[32]  E. Steel,et al.  Interstellar diamonds in meteorites , 1987, Nature.

[33]  Maarten Schmidt,et al.  Continuum energy distributions of quasars in the Palomar-Green Survey , 1987 .

[34]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[35]  A. Schuster On the absorption and scattering of light , 1920 .

[36]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[37]  G. Riss,et al.  THE REST-FRAME EXTREME ULTRAVIOLET SPECTRAL PROPERTIES OF QSOS , 2001 .

[38]  Anuradha Koratkar,et al.  The Ultraviolet and Optical Continuum Emission in Active Galactic Nuclei: The Status of Accretion Disks , 1999 .

[39]  B. Guiderdoni,et al.  First light in the universe. Stars or QSO's? , 1993 .

[40]  P. Martin,et al.  EUV OPACITY WITH INTERSTELLAR DUST , 1991 .

[41]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .