Output Targets and Transcriptional Regulation by a Cyclic Dimeric GMP-Responsive Circuit in the Vibrio parahaemolyticus Scr Network

ABSTRACT The Vibrio parahaemolyticus Scr system modulates decisions pertinent to surface colonization by affecting the cellular level of cyclic dimeric GMP (c-di-GMP). In this work, we explore the scope and mechanism of this regulation. Transcriptome comparison of ΔscrABC and wild-type strains revealed expression differences with respect to ∼100 genes. Elevated c-di-GMP repressed genes in the surface-sensing regulon, including those encoding the lateral flagellar and type III secretion systems and N-acetylglucosamine-binding protein GpbA while inducing genes encoding other cell surface molecules and capsular polysaccharide. The transcription of a few regulatory genes was also affected, and the role of one was characterized. Mutations in cpsQ suppressed the sticky phenotype of scr mutants. cpsQ encodes one of four V. parahaemolyticus homologs in the CsgD/VpsT family, members of which have been implicated in c-di-GMP signaling. Here, we demonstrate that CpsQ is a c-di-GMP-binding protein. By using a combination of mutant and reporter analyses, CpsQ was found to be the direct, positive regulator of cpsA transcription. This c-di-GMP-responsive regulatory circuit could be reconstituted in Escherichia coli, where a low level of this nucleotide diminished the stability of CpsQ. The molecular interplay of additional known cps regulators was defined by establishing that CpsS, another CsgD family member, repressed cpsR, and the transcription factor CpsR activated cpsQ. Thus, we are developing a connectivity map of the Scr decision-making network with respect to its wiring and output strategies for colonizing surfaces and interaction with hosts; in doing so, we have isolated and reproduced a c-di-GMP-sensitive regulatory module in the circuit.

[1]  L. McCarter,et al.  Bis-(3′-5′)-cyclic dimeric GMP-linked quorum sensing controls swarming in Vibrio parahaemolyticus , 2011, Proceedings of the National Academy of Sciences.

[2]  J. Sippy,et al.  Type 3 Fimbriae and Biofilm Formation Are Regulated by the Transcriptional Regulators MrkHI in Klebsiella pneumoniae , 2011, Journal of bacteriology.

[3]  P. Breheny,et al.  Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence , 2011, Molecular microbiology.

[4]  A. G. Bobrov,et al.  Systematic analysis of cyclic di‐GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis , 2011, Molecular microbiology.

[5]  V. Stewart,et al.  Functional roles for the GerE-family carboxyl-terminal domains of nitrate response regulators NarL and NarP of Escherichia coli K-12 , 2010, Microbiology.

[6]  L. McCarter,et al.  Calcium and Iron Regulate Swarming and Type III Secretion in Vibrio parahaemolyticus , 2010, Journal of bacteriology.

[7]  J. Hinton,et al.  Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium , 2010, Molecular microbiology.

[8]  R. Seifert,et al.  A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. , 2010, Journal of microbiological methods.

[9]  X. Fang,et al.  A post‐translational, c‐di‐GMP‐dependent mechanism regulating flagellar motility , 2010, Molecular microbiology.

[10]  D. Blair,et al.  The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. , 2010, Molecular cell.

[11]  Volker Roth,et al.  Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity , 2010, Cell.

[12]  H. Sondermann,et al.  Vibrio cholerae VpsT Regulates Matrix Production and Motility by Directly Sensing Cyclic di-GMP , 2010, Science.

[13]  Amos Bairoch,et al.  PROSITE, a protein domain database for functional characterization and annotation , 2009, Nucleic Acids Res..

[14]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[15]  U. Römling,et al.  Prevailing concepts of c-di-GMP signaling. , 2009, Contributions to microbiology.

[16]  Regine Hengge,et al.  Principles of c-di-GMP signalling in bacteria , 2009, Nature Reviews Microbiology.

[17]  F. Yildiz,et al.  Vibrio biofilms: so much the same yet so different. , 2009, Trends in microbiology.

[18]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[19]  R. Breaker,et al.  Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP , 2008, Science.

[20]  E. Greenberg,et al.  Vibrio parahaemolyticus ScrC Modulates Cyclic Dimeric GMP Regulation of Gene Expression Relevant to Growth on Surfaces , 2007, Journal of bacteriology.

[21]  A. Camilli,et al.  PilZ Domain Proteins Bind Cyclic Diguanylate and Regulate Diverse Processes in Vibrio cholerae* , 2007, Journal of Biological Chemistry.

[22]  L. McCarter,et al.  ScrG, a GGDEF-EAL Protein, Participates in Regulating Swarming and Sticking in Vibrio parahaemolyticus , 2007, Journal of bacteriology.

[23]  U. Römling,et al.  Role of EAL-Containing Proteins in Multicellular Behavior of Salmonella enterica Serovar Typhimurium , 2007, Journal of bacteriology.

[24]  Michael Y. Galperin,et al.  Identification of sensory and signal-transducing domains in two-component signaling systems. , 2007, Methods in enzymology.

[25]  U. Jenal,et al.  Mechanisms of cyclic-di-GMP signaling in bacteria. , 2006, Annual review of genetics.

[26]  U. Römling,et al.  Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium , 2006, Molecular microbiology.

[27]  L. McCarter,et al.  Three New Regulators of Swarming in Vibrio parahaemolyticus , 2006, Journal of bacteriology.

[28]  Brooke A. Jude,et al.  A colonization factor links Vibrio cholerae environmental survival and human infection , 2005, Nature.

[29]  L. McCarter,et al.  Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus , 2004, Molecular microbiology.

[30]  L. McCarter,et al.  Multiple Regulators Control Capsular Polysaccharide Production in Vibrio parahaemolyticus , 2003, Journal of bacteriology.

[31]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[32]  L. McCarter,et al.  Lateral Flagellar Gene System of Vibrio parahaemolyticus , 2003, Journal of bacteriology.

[33]  L. McCarter,et al.  Vibrio parahaemolyticus scrABC, a Novel Operon Affecting Swarming and Capsular Polysaccharide Regulation , 2002, Journal of bacteriology.

[34]  Pierre Baldi,et al.  A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes , 2001, Bioinform..

[35]  S. C. Winans,et al.  The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Leveau,et al.  Improved gfp and inaZ broad-host-range promoter-probe vectors. , 2000, Molecular plant-microbe interactions : MPMI.

[37]  L. McCarter,et al.  Relation of Capsular Polysaccharide Production and Colonial Cell Organization to Colony Morphology in Vibrio parahaemolyticus , 2000, Journal of bacteriology.

[38]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  L. McCarter,et al.  Insertional Inactivation of Genes Encoding Components of the Sodium-Type Flagellar Motor and Switch ofVibrio parahaemolyticus , 2000, Journal of bacteriology.

[40]  L. McCarter The multiple identities of Vibrio parahaemolyticus. , 1999, Journal of molecular microbiology and biotechnology.

[41]  L. McCarter MotX, the channel component of the sodium-type flagellar motor , 1994, Journal of bacteriology.

[42]  M. Silverman,et al.  Genetic analysis in vibrio. , 1991, Methods in enzymology.

[43]  A. L. Koch,et al.  Complications in the simplest cellular enzyme assay: lysis of Escherichia coli for the assay of beta-galactosidase. , 1975, Analytical biochemistry.

[44]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .