Homological mirror symmetry for the symmetric squares of punctured spheres

For an appropriate choice of a $\mathbb{Z}$-grading structure, we prove that the wrapped Fukaya category of the symmetric square of a $(k+3)$-punctured sphere, i.e. the Weinstein manifold given as the complement of $(k+3)$ generic lines in $\mathbb{C}P^2$ is quasi-equivalent to the derived category of coherent sheaves on a singular surface $\mathcal{Z}_{2,k}$ constructed as the boundary of a toric Landau-Ginzburg model $(\mathcal{X}_{2,k}, \mathbf{w}_{2,k})$. We do this by first constructing a quasi-equivalence between certain categorical resolutions of both sides and then localising. We also provide a general homological mirror symmetry conjecture concerning all the higher symmetric powers of punctured spheres. The corresponding toric LG-models $(\mathcal{X}_{n,k},\mathbf{w}_{n,k})$ are constructed from the combinatorics of curves on the punctured surface and are related to small toric resolutions of the singularity $x_1\ldots x_{n+1}= v_1\ldots v_k$.

[1]  A. Polishchuk,et al.  Homological mirror symmetry for higher-dimensional pairs of pants , 2018, Compositio Mathematica.

[2]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[3]  D. Thurston,et al.  Bordered Heegaard Floer homology , 2008, Memoirs of the American Mathematical Society.

[4]  A. Polishchuk,et al.  Matrix factorizations and singularity categories for stacks , 2010, 1011.4544.

[5]  P. Seidel Homological mirror symmetry for the genus two curve , 2008, 0812.1171.

[6]  Nick Sheridan Homological mirror symmetry for Calabi–Yau hypersurfaces in projective space , 2011, 1111.0632.

[7]  D. Auroux Fukaya categories of symmetric products and bordered Heegaard-Floer homology , 2010, 1001.4323.

[8]  A. Polishchuk,et al.  Auslander orders over nodal stacky curves and partially wrapped Fukaya categories , 2017, Journal of Topology.

[9]  Paul Seidel,et al.  Fukaya Categories and Picard-Lefschetz Theory , 2008 .

[10]  Homological mirror symmetry for log Calabi-Yau surfaces , 2020, 2005.05010.

[11]  Nick Sheridan Versality of the relative Fukaya category , 2017, Geometry and Topology.

[12]  Ailsa Keating Homological mirror symmetry for hypersurface cusp singularities , 2015, Selecta Mathematica.

[13]  A. Polishchuk,et al.  Derived equivalences of gentle algebras via Fukaya categories , 2018, Mathematische Annalen.

[14]  D. Auroux Speculations on homological mirror symmetry for hypersurfaces in ( C ∗ ) n , 2017 .

[15]  Y. Oh,et al.  Anchored Lagrangian submanifolds and their Floer theory , 2009, 0907.2122.

[16]  Paul Seidel,et al.  Graded Lagrangian submanifolds , 1999, math/9903049.

[17]  T. Perutz Hamiltonian handleslides for Heegaard Floer homology , 2008, 0801.0564.

[18]  M. Gross,et al.  Mirror symmetry for log Calabi-Yau surfaces I , 2011, Publications mathématiques de l'IHÉS.

[19]  M. U. Isik Equivalence of the Derived Category of a Variety with a Singularity Category , 2010, 1011.1484.

[20]  Daniel Pomerleano,et al.  Global matrix factorizations , 2011, 1101.5847.

[21]  T. Perutz,et al.  Arithmetic mirror symmetry for the 2-torus , 2012, 1211.4632.

[22]  Ed Segal Equivalences Between GIT Quotients of Landau-Ginzburg B-Models , 2009, 0910.5534.

[23]  D. Auroux,et al.  Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces , 2012, 1205.0053.

[24]  A. Polishchuk,et al.  Matrix factorizations and Cohomological Field Theories , 2011, 1105.2903.