A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials.

Disordered sol-gel prepared calcium silicate biomaterials show significant, composition dependent ability to bond with bone. Bone bonding is attributed to rapid hydroxycarbonate apatite (HCA) formation on the glass surface after immersion in body fluid (or implantation). Atomic scale details of the development of the structure of (CaO)x(SiO2)1-x (x = 0.2, 0.3 and 0.5) under heat treatment and subsequent dissolution in simulated body fluid (SBF) are revealed through a multinuclear solid state NMR approach using one-dimensional (17)O, (29)Si, (31)P and (1)H. Central to this study is the combination of conventional static and magic angle spinning (MAS) and two-dimensional (2D) triple quantum (3Q) (17)O NMR experiments that can readily distinguish and quantify the bridging (BOs) and non-bridging (NBOs) oxygens in the silicate network. Although soluble calcium is present in the sol, the (17)O NMR results reveal that the sol-gel produced network structure is initially dominated by BOs after gelation, aging and drying (e.g. at 120 °C), indicating a nanoscale mixture of the calcium salt and a predominantly silicate network. Only once the calcium salt is decomposed at elevated temperatures do the Ca(2+) ions become available to break BO. Apatite forming ability in SBF depends strongly on the surface OH and calcium content. The presence of calcium aids HCA formation via promotion of surface hydration and the ready availability of Ca(2+) ions. (17)O NMR shows the rapid loss of NBOs charge balanced by calcium as it is leached into the SBF. The formation of nanocrystalline, partially ordered HCA can be detected via(31)P NMR. This data indicates the importance of achieving the right balance of BO/NBO for optimal biochemical response and network properties.

[1]  Julian R. Jones,et al.  Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. , 2013, Acta biomaterialia.

[2]  Julian R. Jones,et al.  Effect of calcium source on structure and properties of sol-gel derived bioactive glasses. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[3]  S. Yue,et al.  Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  F. Mauri,et al.  Magnesium incorporation into hydroxyapatite. , 2011, Biomaterials.

[5]  J. Hanna,et al.  Recent technique developments and applications of solid state NMR in characterising inorganic materials. , 2010, Solid state nuclear magnetic resonance.

[6]  C. Grey,et al.  Solid-state NMR calculations for metal oxides and gallates: shielding and quadrupolar parameters for perovskites and related phases. , 2010, Journal of magnetic resonance.

[7]  Julian R. Jones,et al.  Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. , 2009, Biomaterials.

[8]  M. Bohner,et al.  Can bioactivity be tested in vitro with SBF solution? , 2009, Biomaterials.

[9]  Julian R. Jones,et al.  Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass , 2009 .

[10]  J. Stebbins,et al.  Sc2(WO4)3 and Sc2(MoO4)3 and Their Solid Solutions: 45Sc, 17O, and 27Al MAS NMR Results at Ambient and High Temperature , 2009 .

[11]  Julian R. Jones,et al.  Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. , 2007, Biomaterials.

[12]  L. Hench,et al.  The use of advanced diffraction methods in the study of the structure of a bioactive calcia: silica sol-gel glass , 2006 .

[13]  S. Ashbrook,et al.  Solid state 17O NMR-an introduction to the background principles and applications to inorganic materials. , 2006, Chemical Society reviews.

[14]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[15]  Julian R Jones,et al.  Optimising bioactive glass scaffolds for bone tissue engineering. , 2006, Biomaterials.

[16]  R. Rashid,et al.  X-ray diffraction and solid state NMR studies of the growth of hydroxyapatite on bioactive calcia : silica sol-gel glasses , 2005 .

[17]  L. Hench,et al.  Structural studies of bioactivity in sol-gel-derived glasses by X-ray spectroscopy. , 2004, Journal of biomedical materials research. Part A.

[18]  Mark E. Smith,et al.  Probing the local structural environment of calcium by natural-abundance solid-state 43 Ca NMR , 2004 .

[19]  Julian R. Jones,et al.  Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. , 2004, Biomaterials.

[20]  J. Stebbins,et al.  Bonding preferences of non-bridging O atoms: Evidence from 17O MAS and 3QMAS NMR on calcium aluminate and low-silica Ca-aluminosilicate glasses , 2003 .

[21]  Toshiaki Takezawa,et al.  A strategy for the development of tissue engineering scaffolds that regulate cell behavior. , 2003, Biomaterials.

[22]  M. Cerruti,et al.  Characterization of sol–gel bioglasses with the use of simple model systems: a surface-chemistry approach , 2003 .

[23]  M. Holland,et al.  The effects of different heat treatment and atmospheres on the NMR signal and structure of TiO2-ZrO2-SiO2 sol-gel materials. , 2003, Solid state nuclear magnetic resonance.

[24]  N. H. Leeuw,et al.  Density functional theory calculations of local ordering of hydroxy groups and fluoride ions in hydroxyapatite , 2002 .

[25]  Larry L Hench,et al.  Third-Generation Biomedical Materials , 2002, Science.

[26]  Julian R Jones,et al.  Bioactive sol-gel foams for tissue repair. , 2002, Journal of biomedical materials research.

[27]  Y. Millot,et al.  Procedures for labeling the high-resolution axis of two-dimensional MQ-MAS NMR spectra of half-integer quadrupole spins. , 2002, Solid state nuclear magnetic resonance.

[28]  L L Hench,et al.  Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. , 2001, Journal of biomedical materials research.

[29]  A. Chadwick,et al.  Solid-State NMR and X-ray Studies of the Structural Evolution of Nanocrystalline Zirconia , 2001 .

[30]  S. Kohn,et al.  Observation of hydroxyl groups by 17O solid-state multiple quantum MAS NMR in sol-gel-produced silica. , 1999, Solid state nuclear magnetic resonance.

[31]  M. Vallet‐Regí,et al.  In vitro calcium phosphate layer formation on sol-gel glasses of the CaO-SiO(2) system. , 1999, Journal of biomedical materials research.

[32]  Mark E. Smith,et al.  Recent advances in experimental solid state NMR methodology for half-integer spin quadrupolar nuclei , 1999 .

[33]  L L Hench,et al.  Biomaterials: a forecast for the future. , 1998, Biomaterials.

[34]  J. Amoureux,et al.  Triple, quintuple and higher order multiple quantum MAS NMR of quadrupolar nuclei. , 1998, Solid state nuclear magnetic resonance.

[35]  Steven P. Brown,et al.  Two-Dimensional Multiple-Quantum MAS NMR of Quadrupolar Nuclei: A Comparison of Methods , 1997 .

[36]  Mark E. Smith,et al.  Complete resolution of SiOSi and SiOAl fragments in an aluminosilicate glass by 17O multiple quantum magic angle spinning NMR spectroscopy , 1997 .

[37]  Mark E. Smith,et al.  FACTORS CONTROLLING THE 17O NMR CHEMICAL SHIFT IN IONIC MIXED METAL OXIDES , 1996 .

[38]  Steuernagel,et al.  Z Filtering in MQMAS NMR , 1996, Journal of magnetic resonance. Series A.

[39]  X. Cong,et al.  17O MAS NMR Investigation of the Structure of Calcium Silicate Hydrate Gel , 1996 .

[40]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[41]  T. Yamamuro,et al.  Bioactivity of CaO·SiO2-based glasses:in vitro evaluation , 1990 .

[42]  H. Lechert G. Engelhardt und D. Michel: High Resolution Solid State NMR of Silicates and Zeolites. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1987. 485 Seiten, Preis: $ 55.–. , 1988 .

[43]  E. Oldfield,et al.  Solid-state spin-echo Fourier transform NMR of 39K and 67Zn salts at high field , 1986 .

[44]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[45]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[46]  I. Moudrakovski Recent Advances in Solid-State NMR of Alkaline Earth Elements , 2013 .

[47]  Mark E. Smith,et al.  Development of (43)Ca solid state NMR spectroscopy as a probe of local structure in inorganic and molecular materials. , 2013, Progress in nuclear magnetic resonance spectroscopy.

[48]  S. Ashbrook,et al.  Solid-state NMR of high-pressure silicates in the Earth's mantle , 2013 .

[49]  W. Marsden I and J , 2012 .

[50]  Mark E. Smith,et al.  Multinuclear solid-state NMR of inorganic materials , 2002 .

[51]  N. H. Leeuw,et al.  Local ordering of hydroxy groups in hydroxyapatite. , 2001 .

[52]  Gavin Mountjoy,et al.  Structure of (Ta2O5)x(SiO2)1 −x xerogels (x = 0.05, 0.11, 0.18, 0.25 and 1.0) from FTIR, 29Si and 17O MAS NMR and EXAFS , 2000 .

[53]  Mark E. Smith,et al.  Structure of (ZrO2)x(SiO2)1-x xerogels (x=0.1, 0.2, 0.3 and 0.4) from FTIR, 29Si and 17O MAS NMR and EXAFS , 1999 .

[54]  Mark E. Smith,et al.  17O and 29Si Solid State NMR Study of Atomic Scale Structure in Sol-Gel-Prepared TiO2-SiO2 Materials , 1995 .

[55]  E. Oldfield,et al.  Solid-state oxygen 17 nuclear magnetic resonance spectroscopic studies of alkaline earth metasilicates , 1987 .