Fractional-Order Variational Calculus with Generalized Boundary Conditions

This paper presents the necessary and sufficient optimality conditions for fractional variational problems involving the right and the left fractional integrals and fractional derivatives defined in the sense of Riemman-Liouville with a Lagrangian depending on the free end-points. To illustrate our approach, two examples are discussed in detail.

[1]  Mohamed A. E. Herzallah,et al.  Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations , 2009 .

[2]  Richard L Magin,et al.  Fractional calculus in bioengineering, part 2. , 2004, Critical reviews in biomedical engineering.

[3]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[4]  Agnieszka B. Malinowska,et al.  Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative , 2010, Comput. Math. Appl..

[5]  Fernando B. Duarte,et al.  Application of Fractional Calculus in the Dynamical Analysis and Control of Mechanical Manipulators , 2008 .

[6]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[7]  Agnieszka B. Malinowska,et al.  A fractional calculus of variations for multiple integrals with application to vibrating string , 2010, 1001.2722.

[8]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[9]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[10]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[11]  Om P. Agrawal,et al.  Fractional variational calculus and the transversality conditions , 2006 .

[12]  O. Agrawal,et al.  Fractional hamilton formalism within caputo’s derivative , 2006, math-ph/0612025.

[13]  Om P. Agrawal,et al.  Generalized Euler—Lagrange Equations and Transversality Conditions for FVPs in terms of the Caputo Derivative , 2007 .

[14]  J. L. Lage,et al.  Application of Fractional Calculus to Fluid Mechanics , 2002 .

[15]  D. Baleanu,et al.  Fractional Euler—Lagrange Equations of Motion in Fractional Space , 2007 .

[16]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[17]  Eqab M. Rabei,et al.  On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative , 2007, 0708.1690.

[18]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[19]  R. Feynman,et al.  RECENT APPLICATIONS OF FRACTIONAL CALCULUS TO SCIENCE AND ENGINEERING , 2003 .

[20]  Richard L Magin,et al.  Fractional calculus in bioengineering, part 3. , 2004, Critical reviews in biomedical engineering.

[21]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .