Some Undecidability Results Concerning the Property of Preserving Regularity

A finite string-rewriting system R preserves regularity if and only if it preserves Σ-regularity, where Σ is the alphabet containing exactly those letters that have occurrences in the rules of R. This proves a conjecture of Gyenizse and Vagvolgyi (1997). In addition, some undecidability results are presented that generalize results of Gilleron and Tison (1995) from term-rewriting systems to string-rewriting systems. It follows that the property of being regularity preserving is undecidable for term-rewriting systems, thus answering another question of Gyenizse and Vagvolgyi (1997). Finally, it is shown that it is undecidable in general whether a finite, lengthreducing, and confluent string-rewriting system yields a regular set of normal forms for each regular language.

[1]  Sheila A. Greibach,et al.  A note on pushdown store automata and regular systems , 1967 .

[2]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[3]  Jean H. Gallier,et al.  Reductions in Tree Replacement Systems , 1985, Theor. Comput. Sci..

[4]  Jerzy Tiuryn,et al.  The Undecidability of the Semi-unification Problem , 1993, Inf. Comput..

[5]  Sándor Vágvölgyi,et al.  Linear Generalized Semi-Monadic Rewrite Systems Effectively Preserve Recognizability , 1998, Theor. Comput. Sci..

[6]  Ferenc Gécseg,et al.  Tree Languages , 1997, Handbook of Formal Languages.

[7]  Ronald V. Book,et al.  Monadic Thue Systems , 1982, Theor. Comput. Sci..

[8]  Kai Salomaa,et al.  Deterministic Tree Pushdown Automata and Monadic Tree Rewriting Systems , 1988, J. Comput. Syst. Sci..

[9]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[10]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. B: Formal Models and Semantics , 1994 .

[11]  Friedrich Otto,et al.  String-Rewriting Systems , 1993, Text and Monographs in Computer Science.

[12]  Colm Ó'Dúnlaing Finite and infinite regular thue systems , 1981 .

[13]  Friedrich Otto,et al.  Some Undecidability Results for Non-Monadic Church-Rosser Thue Systems , 1984, Theor. Comput. Sci..

[14]  Walter S. Brainerd,et al.  Tree Generating Regular Systems , 1969, Inf. Control..

[15]  Rémi Gilleron Decision Problems for Term Rewriting Systems and Recognizable Tree Languages , 1991, STACS.

[16]  R. Lyndon,et al.  Combinatorial Group Theory , 1977 .

[17]  Friedrich Otto,et al.  When is an Extension of a Specification Consistent? Decidable and Undecidable Cases , 1991, J. Symb. Comput..

[18]  Martin Wirsing,et al.  Algebraic Specification , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[19]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[20]  Sophie Tison,et al.  Regular Tree Languages and Rewrite Systems , 1995, Fundam. Informaticae.

[21]  Philip K. Hooper The undecidability of the Turing machine immortality problem , 1966, Journal of Symbolic Logic.

[22]  Thomas Kretschmer A Closure Property of Regular Languages , 1988, Theor. Comput. Sci..

[23]  Friedrich Otto,et al.  Groups Presented by Certain Classes of Finite Length-Reducing String-Rewriting Systems , 1987, RTA.

[24]  Max Dauchet Simulation of Turning Machines by a Left-Linear Rewrite Rule , 1989, RTA.

[25]  Sándor Vágvölgyi,et al.  Bottom-Up Tree Pushdown Automata: Classification and Connection with Rewrite Systems , 1994, Theor. Comput. Sci..

[26]  Géraud Sénizergues Some Decision Problems about Controlled Rewriting Systems , 1990, Theor. Comput. Sci..