Sulfur infiltrated mesoporous graphene–silica composite as a polysulfide retaining cathode material for lithium–sulfur batteries

[1]  MinHo Yang,et al.  High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures , 2013, Scientific Reports.

[2]  Jean-Marie Tarascon,et al.  Li–S batteries: simple approaches for superior performance , 2013 .

[3]  Guangmin Zhou,et al.  Graphene/metal oxide composite electrode materials for energy storage , 2012 .

[4]  Chunsheng Wang,et al.  Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. , 2011, Nano letters.

[5]  Guangyuan Zheng,et al.  Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. , 2011, Nano letters.

[6]  Gérard Férey,et al.  Cathode composites for Li-S batteries via the use of oxygenated porous architectures. , 2011, Journal of the American Chemical Society.

[7]  K. Müllen,et al.  Sandwich‐Like, Graphene‐Based Titania Nanosheets with High Surface Area for Fast Lithium Storage , 2011, Advanced materials.

[8]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[9]  L. Archer,et al.  Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. , 2011, Angewandte Chemie.

[10]  Xiulei Ji,et al.  Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. , 2011, Nature Communications.

[11]  X. Lou,et al.  Graphene-supported anatase TiO2 nanosheets for fast lithium storage. , 2011, Chemical communications.

[12]  X. Zhao,et al.  Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes , 2011 .

[13]  Hee‐Tae Jung,et al.  Vertical alignment of reduced graphene oxide/Fe-oxide hybrids using the magneto-evaporation method. , 2011, Chemical communications.

[14]  Zhenguo Yang,et al.  Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. , 2011, Physical chemistry chemical physics : PCCP.

[15]  G. Shi,et al.  Graphene based new energy materials , 2011 .

[16]  Weixiang Chen,et al.  In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. , 2011, Chemical communications.

[17]  David M J S Bowman,et al.  Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. , 2011, Nature communications.

[18]  Jin Zhai,et al.  Hierarchically ordered macro-mesoporous TiO₂-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. , 2011, ACS nano.

[19]  Hee‐Tae Jung,et al.  Direct visualization of large-area graphene domains and boundaries by optical birefringency. , 2011, Nature nanotechnology.

[20]  G. Ozin,et al.  Graphene oxide-periodic mesoporous silica sandwich nanocomposites with vertically oriented channels. , 2010, ACS nano.

[21]  M. Thommes Physical Adsorption Characterization of Nanoporous Materials , 2010 .

[22]  Klaus Müllen,et al.  Graphene-based nanosheets with a sandwich structure. , 2010, Angewandte Chemie.

[23]  G. Graff,et al.  Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. , 2010, ACS nano.

[24]  Yue Zheng,et al.  Microscopic mechanism of leakage currents in silica junctions , 2009 .

[25]  Sheng-Zhen Zu,et al.  Aqueous Dispersion of Graphene Sheets Stabilized by Pluronic Copolymers: Formation of Supramolecular Hydrogel , 2009 .

[26]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[27]  Byung-Seon Kong,et al.  Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. , 2009, Chemical communications.

[28]  Ji‐Guang Zhang,et al.  Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. , 2009, ACS nano.

[29]  R. Car,et al.  Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite , 2007 .

[30]  Yongju Jung,et al.  New approaches to improve cycle life characteristics of lithium-sulfur cells , 2007 .

[31]  Yong-Mook Kang,et al.  Effects of Nanosized Adsorbing Material on Electrochemical Properties of Sulfur Cathodes for Li/S Secondary Batteries , 2004 .

[32]  K. Striebel,et al.  Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes , 2000 .

[33]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[34]  Q. Huo,et al.  Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays , 1994 .

[35]  Pierre M. Petroff,et al.  Generalized synthesis of periodic surfactant/inorganic composite materials , 1994, Nature.

[36]  S. Licht,et al.  A Solid Sulfur Cathode for Aqueous Batteries , 1993, Science.

[37]  M. Doeff,et al.  The Use of Polydisulfides and Copolymeric Disulfides in the Li/PEO/SRPE Battery System , 1992 .

[38]  J. Coetzer High temperature lithium/sulphur batteries: a preliminary investigation of a zeolite—sulphur cathode , 1978 .