General w-ZPI-Rings and a Tool for Characterizing Certain Classes of Monoid Rings
暂无分享,去创建一个
[1] G. Chang,et al. Prime Factorization of ideals in commutative rings, with a focus on Krull rings , 2022, 2204.12098.
[2] Jun Seok Oh,et al. The monoid of regular elements in commutative rings with zero divisors , 2021, Communications in Algebra.
[3] J. R. Juett,et al. Unique factorization of ideals in commutative rings with zero divisors , 2021 .
[4] J. R. Juett,et al. Unique factorization properties in commutative monoid rings with zero divisors , 2021, Semigroup Forum.
[5] J. Elliott. Rings, Modules, and Closure Operations , 2019, Springer Monographs in Mathematics.
[6] G. Angermüller. Strong atoms in Krull monoids , 2019, Semigroup Forum.
[7] A. Geroldinger,et al. Sets of arithmetical invariants in transfer Krull monoids , 2018, Journal of Pure and Applied Algebra.
[8] J. R. Juett,et al. U-factorization of ideals , 2018, Communications in Algebra.
[9] C. Jayaram. Weak π-rings , 2017 .
[10] Hwankoo Kim,et al. Foundations of Commutative Rings and Their Modules , 2017 .
[11] D. D. Anderson,et al. Commutative group rings that are présimplifiable or domainlike , 2017 .
[12] Hwankoo Kim,et al. w-Modules over Commutative Rings , 2016 .
[13] Marina Daecher,et al. Introduction To Cyclotomic Fields , 2016 .
[14] Lei Qiao,et al. THE w-WEAK GLOBAL DIMENSION OF COMMUTATIVE RINGS , 2015 .
[15] Hwankoo Kim,et al. Two generalizations of projective modules and their applications , 2015 .
[16] Sebastian Ramacher,et al. On v-Marot Mori rings and C-rings , 2014, 1401.2761.
[17] J. R. Juett. Generalized comaximal factorization of ideals , 2012 .
[18] Iames A. HUCKABAi. THE INTEGRAL CLOSURE OF A NOETHERIAN RING BY , 2010 .
[19] Hwankoo Kim,et al. Some Characterizations of Krull Monoids , 2007 .
[20] Paul Garrett,et al. Commutative rings I , 2007 .
[21] M. Fontana,et al. A generalization of Kronecker function rings and Nagata rings , 2006, math/0604040.
[22] Alfred Geroldinger,et al. Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .
[23] R. G. Swan,et al. Unique comaximal factorization , 2004 .
[24] A. Okabe. On generalized Dedekind domains , 2004 .
[25] Floris Ernst,et al. Multiplicative Ideal Theory , 2004 .
[26] Marco Fontana,et al. Nagata Rings, Kronecker Function Rings, and Related Semistar Operations , 2003, math/0302163.
[27] S. McAdam. UNIQUE FACTORIZATION OF MONIC POLYNOMIALS , 2001 .
[28] Nicholas Roersma. U-factorizations in Commutative Rings with Zero Divisors , 2001 .
[29] M. Zafrullah. Putting T-Invertibility to Use , 2000 .
[30] R. McCasland,et al. On Strong Mori domains , 1999 .
[31] D. D. Anderson,et al. Unique factorization rings with zero divisors , 1999 .
[32] S. M. Bhatwadekar. Projective Modules Over Polynomial Rings , 1999 .
[33] Franz Halter-Koch,et al. Ideal Systems: An Introduction to Multiplicative Ideal Theory , 1998 .
[34] R. McCasland,et al. On w-modules over strong mori domains , 1997 .
[35] D. D. Anderson,et al. Factorization in Commutative Rings with Zero Divisors, III , 1996 .
[36] Charles Ching-An Cheng,et al. Resultants of cyclotomic polynomials , 1995 .
[37] F. Halter-Koch. A characterization of Krull rings with zero divisors , 1993 .
[38] B. Kang. Characterizations of Krull rings with zero divisors , 1991 .
[39] Geroldinger Alfred. On the arithmetic of certain not integrally closed noetheian integral domains , 1991 .
[40] B. Kang. On the converse of a well-known fact about Krull domains , 1989 .
[41] Miles Reid,et al. Commutative Ring Theory , 1989 .
[42] B. Kang. Prüfer v-multiplication domains and the ring R[X]Nv , 1989 .
[43] J. Huckaba. Commutative Rings with Zero Divisors , 1988 .
[44] David F. Anderson,et al. The rings R(X) and R〈X〉 , 1985 .
[45] R. Gilmer,et al. Commutative Semigroup Rings , 1984 .
[46] Huah Chu. On the of graded rings , 1984 .
[47] A. Bouvier. The Local Class Group of a Krull Domain , 1983, Canadian Mathematical Bulletin.
[48] David F. Anderson,et al. Divisibility Properties of Graded Domains , 1982, Canadian Journal of Mathematics.
[49] D. D. Anderson,et al. Globalization of some local properties in Krull domains , 1982 .
[50] E. Jespers,et al. Ω-krull rings. I , 1982 .
[51] D. Robinson. A Course in the Theory of Groups , 1982 .
[52] Leo G. Chouinard,et al. Krull semigroups and divisor class groups , 1981 .
[53] T. Shores,et al. Arithmetical Semigroup Rings , 1980, Canadian Journal of Mathematics.
[54] E. Houston,et al. Some remarks on star-operations , 1980 .
[55] D. D. Anderson. π-domains, overrings, and divisorial ideals , 1978, Glasgow Mathematical Journal.
[56] D. D. Anderson,et al. Some Remarks on the Ring R(X) , 1978 .
[57] W. Vasconcelos,et al. Flat ideals II , 1977 .
[58] D. D. Anderson. Abstract commutative ideal theory without chain condition , 1976 .
[59] Warren D. Nichols,et al. The Krull intersection theorem. II. , 1976 .
[60] D. D. Anderson,et al. Multiplication Ideals, Multiplication Rings, and the Ring R(X) , 1976, Canadian Journal of Mathematics.
[61] Thomas H. Parker,et al. Divisibility properties in semigroup rings. , 1974 .
[62] Thomas H. Parker,et al. Semigroup rings as Prüfer rings , 1974 .
[63] K. Levitz. A characterization of general Z.P.I.-rings. II , 1972 .
[64] K. Levitz. A Characterization of General Z.P.I.-Rings , 1972 .
[65] P. Samuel,et al. About Euclidean rings , 1971 .
[66] E. Evans. Zero divisors in Noetherian-like rings , 1971 .
[67] C. Fletcher. The structure of unique factorization rings , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.
[68] C. Fletcher. Unique factorization rings , 1969, Mathematical Proceedings of the Cambridge Philosophical Society.
[69] D. Northcott,et al. Lessons on rings, modules and multiplicities , 1968 .
[70] H. Butts,et al. Almost Multiplication Rings , 1965, Canadian Journal of Mathematics.
[71] S. Mori. Allgemeine Z.P.I.-Ringe , 1940 .
[72] S. Mori. Über die Produktzerlegung der Hauptideale. III , 1938 .
[73] W. Krull,et al. Allgemeine Bewertungstheorie. , 1932 .
[74] Richard Dedekind,et al. Sur la théorie des nombres entiers algébriques , 1877 .
[75] E. Kummer. Über die Zerlegung der aus Wurzeln der Einheit gebildeten complexen Zahlen in ihre Primfactoren. , 1847 .