A high order moving interface treatment for fluid-structure interaction in compressible flow

Abstract: In this study, we present a high order moving interface treatment for fluidstructure interaction (FSI) problems between compressible viscous flows and deformable structure. We consider a loosely partitioned coupling strategy that involves three parts: flow solver, structure solver and fluid-structure interface treatment. In particular, the compressible Navier-Stokes equations are solved by a high order finite difference method on fixed Cartesian Eulerian grids. The structure is considered as a beam under the linearity assumption, which is solved by a standard finite element method in Lagrangian coordinates. In terms of the fluid-structure interaction interface treatment, a new simplified inverse Lax-Wendroff approach is extended and implemented to ensure global high order accuracy. To validate our method, we provide several numerical tests including accuracy test, acoustic wave scattering from cylinder, shock-loaded rigid cylinder and deformation of a panel induced by shock waves. The numerical results demonstrate that our method is capable of handling FSI problems involving shock wave and structure deformations non-oscillatorily and with high order accuracy for smooth solutions.

[1]  Chi-Wang Shu,et al.  A high order moving boundary treatment for convection-diffusion equations , 2022, J. Comput. Phys..

[2]  Shuhai Zhang,et al.  A high order boundary scheme to simulate complex moving rigid body under impingement of shock wave , 2021, Applied Mathematics and Mechanics.

[3]  Tianbao Ma,et al.  A novel fluid-structure interaction algorithm for compressible flows and deformable structures , 2020, J. Comput. Phys..

[4]  Dominik Obrist,et al.  An immersed boundary method for fluid-structure interaction based on variational transfer , 2019, J. Comput. Phys..

[5]  Amneet Pal Singh Bhalla,et al.  A DLM immersed boundary method based wave-structure interaction solver for high density ratio multiphase flows , 2019, J. Comput. Phys..

[6]  Li Wang,et al.  An immersed boundary method for fluid-structure interaction with compressible multiphase flows , 2017, J. Comput. Phys..

[7]  R. Bhardwaj,et al.  Fluid–structure interaction solver for compressible flows with applications to blast loading on thin elastic structures , 2017, 1705.08336.

[8]  Chi-Wang Shu,et al.  Stability Analysis of the Inverse Lax–Wendroff Boundary Treatment for High Order Central Difference Schemes for Diffusion Equations , 2017, J. Sci. Comput..

[9]  Chi-Wang Shu,et al.  Inverse Lax-Wendroff procedure for numerical boundary conditions of convection-diffusion equations , 2016, J. Comput. Phys..

[10]  Chi-Wang Shu,et al.  Stability analysis of the inverse Lax-Wendroff boundary treatment for high order upwind-biased finite difference schemes , 2016, J. Comput. Appl. Math..

[11]  Nikolaus A. Adams,et al.  A cut-cell finite volume - finite element coupling approach for fluid-structure interaction in compressible flow , 2015, J. Comput. Phys..

[12]  T. Wick Coupling of fully Eulerian and arbitrary Lagrangian–Eulerian methods for fluid-structure interaction computations , 2013 .

[13]  S Ganpule,et al.  Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches , 2012, Biomechanics and Modeling in Mechanobiology.

[14]  J. Horáček,et al.  Numerical simulation of fluid–structure interaction of compressible flow and elastic structure , 2013, Computing.

[15]  Yan Jiang,et al.  An Alternative Formulation of Finite Difference Weighted ENO Schemes with Lax-Wendroff Time Discretization for Conservation Laws , 2013, SIAM J. Sci. Comput..

[16]  Chang Yang,et al.  An inverse Lax-Wendroff method for boundary conditions applied to Boltzmann type models , 2012, J. Comput. Phys..

[17]  R. Mittal,et al.  Benchmarking a Coupled Immersed-Boundary-Finite-Element Solver for Large-Scale Flow-Induced Deformation , 2012 .

[18]  Frederick Stern,et al.  A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions , 2012, J. Comput. Phys..

[19]  Cheng Wang,et al.  Efficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws , 2012, J. Comput. Phys..

[20]  Luoding Zhu,et al.  An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments , 2011, J. Comput. Phys..

[21]  Chi-Wang Shu,et al.  A high order moving boundary treatment for compressible inviscid flows , 2011, J. Comput. Phys..

[22]  Jung Hee Seo,et al.  A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries , 2011, J. Comput. Phys..

[23]  Christian Tenaud,et al.  A conservative coupling algorithm between a compressible flow and a rigid body using an Embedded Boundary method , 2010, J. Comput. Phys..

[24]  Chi-Wang Shu,et al.  Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws , 2010, J. Comput. Phys..

[25]  E. Oñate,et al.  A monolithic Lagrangian approach for fluid–structure interaction problems , 2010 .

[26]  Mario A. Storti,et al.  Fluid-Structure interaction study of the start-up of a rocket engine nozzle , 2010 .

[27]  H. Sung,et al.  An immersed boundary method for fluid–flexible structure interaction , 2009 .

[28]  Oleg V. Vasilyev,et al.  A Brinkman penalization method for compressible flows in complex geometries , 2007, J. Comput. Phys..

[29]  Rajat Mittal,et al.  A sharp interface immersed boundary method for compressible viscous flows , 2007, J. Comput. Phys..

[30]  Rolf Rannacher,et al.  Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on an Eulerian Variational Formulation , 2006 .

[31]  T. Belytschko,et al.  An Eulerian–Lagrangian method for fluid–structure interaction based on level sets , 2006 .

[32]  Y. Burtschell,et al.  Shock wave impacts on deforming panel, an application of fluid-structure interaction , 2005 .

[33]  A. M. Awruch,et al.  Numerical simulation of fluid–structure interaction using the finite element method , 2005 .

[34]  J. Falcovitz,et al.  A Two-Dimensional Conservation Laws Scheme for Compressible Flows with Moving Boundaries , 1997 .

[35]  David I. Gottlieb,et al.  The Theoretical Accuracy of Runge-Kutta Time Discretizations for the Initial Boundary Value Problem: A Study of the Boundary Error , 1995, SIAM J. Sci. Comput..

[36]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[37]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[38]  Chi-Wang Shu,et al.  A NEW TYPE OF SIMPLIFIED INVERSE LAX-WENDROFF , 2022 .

[39]  Yan Jiang,et al.  Free-stream preserving finite difference schemes on curvilinear meshes , 2014 .

[40]  K. T. Ramesh,et al.  A computational model of blast loading on the human eye , 2013, Biomechanics and Modeling in Mechanobiology.

[41]  Hans-Joachim Bungartz,et al.  Fluid-structure interaction : modelling, simulation, optimisation , 2006 .