Skyrmion-based multi-channel racetrack

Magnetic skyrmions are promising for the application of racetrack memories, logic gates, and other nano-devices, owing to their topologically protected stability, small size, and low driving current. In this work, we propose a skyrmion-based multi-channel racetrack memory where the skyrmion moves in the selected channel by applying voltage-controlled magnetic anisotropy gates. It is demonstrated numerically that a current-dependent skyrmion Hall effect can be restrained by the additional potential of the voltage-controlled region, and the skyrmion velocity and moving channel in the racetrack can be operated by tuning the voltage-controlled magnetic anisotropy, gate position, and current density. Our results offer a potential application of racetrack memory based on skyrmions.

[1]  V. Cros,et al.  A skyrmion-based spin-torque nano-oscillator , 2016, 1602.00118.

[2]  Yan Zhou,et al.  Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack , 2015, Scientific Reports.

[3]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[4]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[5]  G. Finocchio,et al.  A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.

[6]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[7]  Qingfang Liu,et al.  Current-induced magnetic skyrmions oscillator , 2015 .

[8]  Stone,et al.  The Magnus Force on Skyrmions in Ferromagnets and Quantum Hall Systems , 1995 .

[9]  Yoshishige Suzuki,et al.  Quantitative Evaluation of Voltage-Induced Magnetic Anisotropy Change by Magnetoresistance Measurement , 2011 .

[10]  M. Mochizuki,et al.  Current-induced skyrmion dynamics in constricted geometries. , 2013, Nature nanotechnology.

[11]  Yan Zhou,et al.  Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions , 2014, Scientific Reports.

[12]  Kang L. Wang,et al.  Direct observation of the skyrmion Hall effect , 2016, Nature Physics.

[13]  J. Zang,et al.  Dynamics of an insulating Skyrmion under a temperature gradient. , 2013, Physical review letters.

[14]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[15]  Yan Zhou,et al.  Skyrmion stability in nanocontact spin-transfer oscillators , 2015 .

[16]  Jan Muller Magnetic Skyrmions on a Two-Lane Racetrack , 2016, 1606.07412.

[17]  Yan Zhou,et al.  Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory , 2015, Scientific Reports.

[18]  L. You,et al.  Skyrmion-based high-frequency signal generator , 2017 .

[19]  H. Fangohr,et al.  Driving magnetic skyrmions with microwave fields , 2015, 1505.00445.

[20]  M. Milovsevi'c,et al.  Effects of spatially engineered Dzyaloshinskii-Moriya interaction in ferromagnetic films , 2017, 1704.00770.

[21]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[22]  Kang L. Wang,et al.  Electric-field guiding of magnetic skyrmions , 2015, 1505.03972.

[23]  M. Garst,et al.  Magnon-skyrmion scattering in chiral magnets , 2014, 1405.1568.

[24]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[25]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[26]  J. H. Franken,et al.  Electric-field control of domain wall motion in perpendicularly magnetized materials , 2012, Nature Communications.

[27]  A. Thiele Steady-State Motion of Magnetic Domains , 1973 .

[28]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[29]  D. Ralph,et al.  Spin-torque ferromagnetic resonance induced by the spin Hall effect. , 2010, Physical review letters.

[30]  W. Lew,et al.  Guided current-induced skyrmion motion in 1D potential well , 2015, Scientific Reports.

[31]  Satoru Emori,et al.  Current-driven dynamics of Dzyaloshinskii domain walls in the presence of in-plane fields: Full micromagnetic and one-dimensional analysis , 2014 .