Shape-memory Polymers for Orthopaedic Soft-Tissue Repair

Shape-memory polymers (SMPs) and their medical devices offer improved performance for soft-tissue fixation because of their ability to expand in vivo. Here, we describe the basics of the SMP cycle and the fundamental biomechanics of SMP soft-tissue fixation devices, in particular their effect on graft relaxation after device insertion. A surgical technique for posterior lateral corner reconstruction of the knee is presented that uses several SMP devices to simplify the procedure.

[1]  Freddie H. Fu,et al.  Current Trends in Anterior Cruciate Ligament Reconstruction , 1999, The American journal of sports medicine.

[2]  M. Hull,et al.  Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons. , 2001, Journal of biomechanical engineering.

[3]  William M. Vannah,et al.  Anterior Cruciate Ligament Graft Tensioning in Full Extension , 1995, The American journal of sports medicine.

[4]  G. Altman,et al.  The effect of interference screw diameter on fixation of soft-tissue grafts in anterior cruciate ligament reconstruction. , 2010, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[5]  A. Amis,et al.  A comparison of five tibial-fixation systems in hamstring-graft anterior cruciate ligament reconstruction , 2004, Knee Surgery, Sports Traumatology, Arthroscopy.

[6]  D. Gwynne-Jones,et al.  FAILURE STRENGTHS OF CONCENTRIC AND ECCENTRIC IMPLANTS FOR HAMSTRING GRAFT FIXATION , 2008, ANZ journal of surgery.

[7]  Rui Xiao,et al.  Solvent-driven temperature memory and multiple shape memory effects. , 2015, Soft matter.

[8]  J. Nyland,et al.  Different factors predict CentraLoc and Intrafix fixation of quadruple hamstring allografts in low density cadaveric tibiae , 2008, European Journal of Orthopaedic Surgery & Traumatology.

[9]  T. Zantop,et al.  Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction: in vitro study comparing titanium, poly-d,l-lactide, and poly-d,l-lactide-tricalcium phosphate screws. , 2006, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[10]  Michael M. Zimkowski,et al.  Biocompatibility and tissue integration of a novel shape memory surgical mesh for ventral hernia: in vivo animal studies. , 2014, Journal of biomedical materials research. Part B, Applied biomaterials.

[11]  Ken Gall,et al.  Shape-Memory Polymers for Biomedical Applications , 2009 .

[12]  K. Gall,et al.  A Biomechanical Comparison of Initial Fixation Strength of 3 Different Methods of Anterior Cruciate Ligament Soft Tissue Graft Tibial Fixation , 2007, The American journal of sports medicine.

[13]  Mika Vihavainen,et al.  The Fixation Strength of Six Hamstring Tendon Graft Fixation Devices in Anterior Cruciate Ligament Reconstruction: Part I: Femoral Site * , 2003, The American journal of sports medicine.

[14]  Ken Gall,et al.  Mechanical Requirements of Shape-Memory Polymers in Biomedical Devices , 2013 .

[15]  N. Südkamp,et al.  Tendon healing in a bone tunnel. Part II , 2002 .

[16]  M. Järvinen,et al.  Interference Screw Fixation of Soft Tissue Grafts in Anterior Cruciate Ligament Reconstruction: Part 2 , 2004, The American journal of sports medicine.

[17]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[18]  A. Weiler,et al.  Tendon healing in a bone tunnel. Part I: Biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. , 2002, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[19]  M. Hull,et al.  Structural Properties of Six Tibial Fixation Methods for Anterior Cruciate Ligament Soft Tissue Grafts , 1999, The American journal of sports medicine.

[20]  F. Clubb,et al.  Design and verification of a shape memory polymer peripheral occlusion device. , 2016, Journal of the mechanical behavior of biomedical materials.

[21]  Alicia M. Ortega,et al.  Strong, Tailored, Biocompatible Shape‐Memory Polymer Networks , 2008, Advanced functional materials.

[22]  Bin Wang,et al.  Post-operative analysis of ACL tibial fixation , 2009, Knee Surgery, Sports Traumatology, Arthroscopy.

[23]  Robin Shandas,et al.  Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. , 2007, Biomaterials.

[24]  K. Gall,et al.  Anterior cruciate ligament fixation: is radial force a predictor of the pullout strength of soft-tissue interference devices? , 2012, The Knee.

[25]  P. Chambat,et al.  Graft fixation in cruciate ligament reconstruction. , 2001, The American journal of sports medicine.

[26]  Ward Small,et al.  Low density biodegradable shape memory polyurethane foams for embolic biomedical applications. , 2013, Acta biomaterialia.

[27]  A. J. Thake,et al.  Optimal screw diameter for interference fixation in a bone tunnel: a porcine model , 2004, Knee Surgery, Sports Traumatology, Arthroscopy.

[28]  K. Gall,et al.  Impact of shape-memory programming on mechanically-driven recovery in polymers , 2011 .

[29]  Angela Lin,et al.  Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens. , 2016, Journal of the mechanical behavior of biomedical materials.

[30]  Hao Wu,et al.  Extraluminal distraction enterogenesis using shape-memory polymer. , 2014, Journal of pediatric surgery.

[31]  A. Weiler,et al.  The Influence of Screw Geometry on Hamstring Tendon Interference Fit Fixation , 2000, The American journal of sports medicine.

[32]  O. Hapa,et al.  ACL Fixation Devices , 2009, Sports medicine and arthroscopy review.

[33]  J. Nyland,et al.  A Biomechanical Comparison of Initial Soft Tissue Tibial Fixation Devices , 2004, The American journal of sports medicine.

[34]  J. Elias,et al.  Viscoelasticity and temperature variations decrease tension and stiffness of hamstring tendon grafts following anterior cruciate ligament reconstruction. , 2006, The Journal of bone and joint surgery. American volume.

[35]  A. Weiler,et al.  Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: The impact of fixation level and fixation method under cyclic loading. , 2002, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[36]  T. Wickiewicz,et al.  Interference screw position and hamstring graft location for anterior cruciate ligament reconstruction. , 1998, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[37]  D. Caborn,et al.  Interference Screw Fixation Strength of a Quadrupled Hamstring Tendon Graft Is Directly Related to Bone Mineral Density and Insertion Torque , 2000, The American journal of sports medicine.