Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera

Abstract We demonstrated wide-field optical coherence tomography (OCT) using an ultrahigh-speed CMOS (complementary metal oxide semiconductor) camera. We obtained en face OCT images (512 × 512 pixels) at 1500 frames per second by calculating two sequential images. Three-dimensional imaging was achieved by switching the illumination on and off at the same frequency as the beat signal generated by the axial scan in the reference arm to avoid decreasing the interference components in the camera output. A sample volume of 2.6 × 2.6 × 1.2 ( x  ×  y  ×  z ) mm 3 (corresponding to 512 × 512 × 375 pixels) was imaged in 0.25 s in a single axial scan in the reference arm. We successfully imaged the human finger in vivo with a sensitivity of 73 dB, after 10 × 10 pixel averaging.

[1]  C. Boccara,et al.  Ultrahigh-resolution full-field optical coherence tomography. , 2004, Applied optics.

[2]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[3]  David A. Jackson,et al.  Three dimensional OCT images from retina and skin. , 2000, Optics express.

[4]  B E Bouma,et al.  Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera. , 2006, Optics express.

[5]  A. Fercher,et al.  Wavelength-tuning interferometry of intraocular distances. , 1997, Applied optics.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  N Tsurumachi,et al.  Wide-field optical coherence tomography: imaging of biological tissues. , 2002, Applied optics.

[8]  A. Boccara,et al.  High-resolution full-field optical coherence tomography with a Linnik microscope. , 2002, Applied optics.

[9]  H Saint-Jalmes,et al.  Full-field optical coherence microscopy. , 1998, Optics letters.

[10]  Kate Grieve,et al.  Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography , 2005 .

[11]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[12]  K Grieve,et al.  Three-dimensional cellular-level imaging using full-field optical coherence tomography. , 2004, Physics in medicine and biology.

[13]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[14]  A. Boccara,et al.  Thermal-light full-field optical coherence tomography. , 2002, Optics letters.

[15]  Andrew G. Glen,et al.  APPL , 2001 .

[16]  Qienyuan Zhou,et al.  Three-dimensional imaging of the human retina by high-speed optical coherence tomography. , 2003, Optics express.

[17]  P Seitz,et al.  Optical coherence topography based on a two-dimensional smart detector array. , 2001, Optics letters.

[18]  M. Akiba,et al.  Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras. , 2003, Optics letters.

[19]  Kate Grieve,et al.  In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography. , 2005, Optics express.

[20]  Claude Boccara,et al.  Thermal-light full-field optical coherence tomography in the 1.2 μm wavelength region , 2006 .

[21]  David A. Jackson,et al.  En-face coherence imaging using galvanometer scanner modulation. , 1998, Optics letters.

[22]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[23]  A Rollins,et al.  In vivo video rate optical coherence tomography. , 1998, Optics express.

[24]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[25]  Theo Lasser,et al.  Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array , 2002 .

[26]  Theo Lasser,et al.  Video-rate three-dimensional optical coherence tomography. , 2002, Optics express.

[27]  A C Boccara,et al.  Stroboscopic ultrahigh-resolution full-field optical coherence tomography. , 2005, Optics letters.

[28]  J. Fujimoto,et al.  Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. , 2006, Optics express.