Engineering Multifunctional Spacer Fabrics Through Machine Knitting

Machine knitting is an increasingly accessible fabrication technology for producing custom soft goods. However, recent machine knitting research has focused on knit shaping, or on adapting hand-knitting patterns. We explore a capability unique to machine knitting: producing multilayer spacer fabrics. These fabrics consist of two face layers connected by a monofilament filler yarn which gives the structure stiffness and volume. We show how to vary knit patterning and yarn parameters in spacer fabrics to produce tactile materials with embedded functionality for forming soft actuated mechanisms and sensors with tunable density, stiffness, material bias, and bristle properties. These soft mechanisms can be rapidly produced on a computationally-controlled v-bed knitting machine and integrated directly into soft objects.

[1]  Guanyun Wang,et al.  Printed Paper Actuator: A Low-cost Reversible Actuation and Sensing Method for Shape Changing Interfaces , 2018, CHI.

[2]  N. Fang,et al.  Mechanical Metamaterials and Their Engineering Applications , 2019, Advanced Engineering Materials.

[3]  Ruojia Sun,et al.  Weaving a Second Skin: Exploring Opportunities for Crafting On-Skin Interfaces Through Weaving , 2020, Conference on Designing Interactive Systems.

[4]  H. Abou-Taleb Technical features:: Spacer fabrics for soft but strong knee braces , 2014 .

[5]  IshiiHiroshi,et al.  SensorKnit: Architecting Textile Sensors with Machine Knitting , 2019, 3D Printing and Additive Manufacturing.

[6]  Scott E. Hudson,et al.  A Layered Fabric 3D Printer for Soft Interactive Objects , 2015, CHI.

[7]  Alex Olwal,et al.  I/O Braid: Scalable Touch-Sensitive Lighted Cords Using Spiraling, Repeating Sensing Textiles and Fiber Optics , 2018, UIST.

[8]  Robert Kovacs,et al.  Digital Mechanical Metamaterials , 2017, CHI.

[9]  A. Grbic,et al.  Experimental verification of backward-wave radiation from a negative refractive index metamaterial , 2002 .

[10]  Kui Wu,et al.  Visual knitting machine programming , 2019, ACM Trans. Graph..

[11]  Steve Marschner,et al.  Weaving Objects: Spatial Design and Functionality of 3D-Woven Textiles , 2019, Leonardo.

[12]  Thomas Gries,et al.  3-D Textiles for Advanced Cement Based Matrix Reinforcement , 2007 .

[13]  Roel Vertegaal,et al.  MorePhone: an actuated shape changing flexible smartphone , 2013, CHI Extended Abstracts.

[14]  Ting Xu,et al.  Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial , 2014, Nature Communications.

[15]  Daniele Moro,et al.  Design. Fabrication, and Evaluation of Tendon-Driven Multi-Fingered Foam Hands , 2018, 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids).

[16]  Xiang 'Anthony' Chen,et al.  3D Printed Hair: Fused Deposition Modeling of Soft Strands, Fibers, and Bristles , 2015, UIST.

[17]  Hiroshi Ishii,et al.  Cilllia: 3D Printed Micro-Pillar Structures for Surface Texture, Actuation and Sensing , 2016, CHI.

[18]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[19]  Teddy Seyed,et al.  Tessutivo: Contextual Interactions on Interactive Fabrics with Inductive Sensing , 2019, UIST.

[20]  Hiroshi Ishii,et al.  PneUI: pneumatically actuated soft composite materials for shape changing interfaces , 2013, UIST.

[21]  Amirhossein H. Memar,et al.  PneuSleeve: In-fabric Multimodal Actuation and Sensing in a Soft, Compact, and Expressive Haptic Sleeve , 2020, CHI.

[22]  Hong Hu,et al.  Sound Absorption Behavior of Knitted Spacer Fabrics , 2010 .

[23]  Yoshihiro Kawahara,et al.  MorphIO: Entirely Soft Sensing and Actuation Modules for Programming Shape Changes through Tangible Interaction , 2019, Conference on Designing Interactive Systems.

[24]  Zhiyong Chen,et al.  3D Upper Body Reconstruction with Sparse Soft Sensors. , 2020, Soft robotics.

[25]  Pedro Lopes,et al.  Metamaterial Textures , 2018, CHI.

[26]  Scott E. Hudson,et al.  Desktop Electrospinning: A Single Extruder 3D Printer for Producing Rigid Plastic and Electrospun Textiles , 2019, CHI.

[27]  Paolo Cignoni,et al.  Elastic textures for additive fabrication , 2015, ACM Trans. Graph..

[28]  Zhiyong Chen,et al.  Sensock: 3D Foot Reconstruction with Flexible Sensors , 2020, CHI.

[29]  Yasuaki Kakehi,et al.  FoamSense: Design of Three Dimensional Soft Sensors with Porous Materials , 2017, UIST.

[30]  Ivan Poupyrev,et al.  Project Jacquard: Interactive Digital Textiles at Scale , 2016, CHI.

[31]  Matthew S. Reynolds,et al.  Finding Common Ground: A Survey of Capacitive Sensing in Human-Computer Interaction , 2017, CHI.

[32]  Peyman Servati,et al.  Electromechanical properties of knitted wearable sensors: part 1 – theory , 2014 .

[33]  Lining Yao,et al.  Digital Fabrication of Soft Actuated Objects by Machine Knitting , 2019, CHI.

[34]  Hong Hu,et al.  Compression property and air permeability of weft‐knitted spacer fabrics , 2011 .

[35]  David Lindlbauer,et al.  Understanding Metamaterial Mechanisms , 2019, CHI.

[36]  Sean Follmer,et al.  A Soft, Controllable, High Force Density Linear Brake Utilizing Layer Jamming , 2018, IEEE Robotics and Automation Letters.

[37]  H. M. El-Dessouky,et al.  3D Woven Composites: From Weaving to Manufacturing , 2018, Recent Developments in the Field of Carbon Fibers.

[38]  Z. Zhang,et al.  Effect of Structure on the Mechanical Behaviors of Three-Dimensional Spacer Fabric Composites , 2009 .

[39]  Jessica K. Hodgins,et al.  Automatic Machine Knitting of 3D Meshes , 2018, ACM Trans. Graph..

[40]  Sriram Subramanian,et al.  VARI-SOUND: A Varifocal Lens for Sound , 2019, CHI.

[41]  Michael Haller,et al.  Knitted RESi: A Highly Flexible, Force-Sensitive Knitted Textile Based on Resistive Yarns , 2020, SIGGRAPH Emerging Technologies.

[42]  Scott E. Hudson,et al.  Printing teddy bears: a technique for 3D printing of soft interactive objects , 2014, CHI.

[43]  Katia Bertoldi,et al.  Kirigami skins make a simple soft actuator crawl , 2018, Science Robotics.

[44]  Paul Strohmeier,et al.  PolySense: Augmenting Textiles with Electrical Functionality using In-Situ Polymerization , 2020, CHI.

[45]  Jessica K. Hodgins,et al.  KnitPicking Textures: Programming and Modifying Complex Knitted Textures for Machine and Hand Knitting , 2019, UIST.

[46]  Schendy Kernizan,et al.  Active textile tailoring , 2019, SIGGRAPH Emerging Technologies.

[47]  Philippe Block,et al.  Automated Generation of Knit Patterns for Non-developable Surfaces , 2018 .

[48]  Joseph A. Paradiso,et al.  Sonoflex: Embroidered Speakers Without Permanent Magnets , 2020, UIST.

[49]  Angela Davies,et al.  The Use of spacer fabrics for absorbent medical applications. , 2009 .

[50]  Devin J. Balkcom,et al.  Reconstructing Human Joint Motion with Computational Fabrics , 2019, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[51]  J Underwood The design of 3D shape knitted preforms , 2009 .

[52]  Pedro Lopes,et al.  Metamaterial Mechanisms , 2016, UIST.

[53]  Alex Olwal,et al.  E-Textile Microinteractions: Augmenting Twist with Flick, Slide and Grasp Gestures for Soft Electronics , 2020, CHI.

[54]  Wojciech Matusik,et al.  Knitting Skeletons: A Computer-Aided Design Tool for Shaping and Patterning of Knitted Garments , 2019, UIST.

[55]  M Glazzard Re-addressing the role of knitted textile design knowledge: auxetic textiles from a practice-led, designer-maker perspective , 2014 .

[56]  Ge Mingqiao,et al.  The Compression Behaviour of Warp Knitted Spacer Fabric , 2008 .

[57]  Hiroshi Ishii,et al.  aeroMorph - Heat-sealing Inflatable Shape-change Materials for Interaction Design , 2016, UIST.

[58]  Alex Olwal,et al.  I/O Braid: Scalable Touch-Sensitive Lighted Cords Using Spiraling, Repeating Sensing Textiles and Fiber Optics , 2018, UIST.