Title: Evolutionary genomics of anthroponosis in Cryptosporidium

54 Human is the protozoan cause of diarrhoeal worldwide, and a preponderance of is caused Cryptosporidium hominis and C. parvum . 56 Both species consist of several subtypes with distinct geographic distributions and host 57 preferences (i.e. generalist zoonotic and specialist anthroponotic subtypes). The evolutionary 58 processes driving the adaptation to human host, and the population structure remain 59 unknown. In this study, we analyse 21 whole genome sequences to elucidate the evolution of 60 anthroponosis. We show that C. parvum splits into two subclades, and that the specialist 61 anthroponotic subtype IIc-a shares a subset of loci with C. hominis that are undergoing rapid 62 convergent evolution driven by positive selection. Subtype IIc-a also has an elevated level of 63 insertion-deletion (indel) mutations in the peri-telomeric genes, which is characteristic also 64 for other specialist subtypes. Genetic exchange between subtypes plays a prominent role 65 throughout the evolution of Cryptosporidium . Interestingly, recombinant regions are enriched 66 for positively selected genes and potential virulence factors, which indicates adaptive 67 introgression. Analysis of 467 gp60 sequences collected across the world shows that the 68 population genetic structure differs markedly between the main zoonotic subtype (isolation- 69 by-distance) and the anthroponotic subtype (admixed population structure). Finally, we show 70 that introgression between the four anthroponotic Cryptosporidium subtypes and species 71 included in this study has occurred recently, probably within the past millennium.

[1]  Jonathan D. G. Jones,et al.  Albugo candida race diversity, ploidy and host-associated microbes revealed using DNA sequence capture on diseased plants in the field. , 2018, The New phytologist.

[2]  R. Gasser,et al.  Cryptosporidium viatorum from the native Australian swamp rat Rattus lutreolus - An emerging zoonotic pathogen? , 2018, International journal for parasitology. Parasites and wildlife.

[3]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[4]  J. Rayner,et al.  Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes , 2017, Cell.

[5]  D. Kwiatkowski,et al.  Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution , 2017, Nature.

[6]  Simon H. Martin,et al.  Exploring Evolutionary Relationships Across the Genome Using Topology Weighting , 2016, Genetics.

[7]  Michael Lynch,et al.  Genetic drift, selection and the evolution of the mutation rate , 2016, Nature Reviews Genetics.

[8]  G. Widmer,et al.  Cryptosporidium within-host genetic diversity: systematic bibliographical search and narrative overview. , 2016, International journal for parasitology.

[9]  E. Legrand,et al.  Plasmodium copy number variation scan: gene copy numbers evaluation in haploid genomes , 2016, Malaria Journal.

[10]  Sesh A. Sundararaman,et al.  Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria , 2016, Nature Communications.

[11]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[12]  C. Oosterhout,et al.  hybridcheck: software for the rapid detection, visualization and dating of recombinant regions in genome sequence data , 2016, Molecular ecology resources.

[13]  L. S. Swapna,et al.  Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes , 2016, Nature Communications.

[14]  J. Webster,et al.  Hybridization in Parasites: Consequences for Adaptive Evolution, Pathogenesis, and Public Health in a Changing World , 2015, PLoS pathogens.

[15]  J. Pachebat,et al.  Generation of whole genome sequences of new Cryptosporidium hominis and Cryptosporidium parvum isolates directly from stool samples , 2015, BMC Genomics.

[16]  Alexandros Stamatakis,et al.  Short Tree, Long Tree, Right Tree, Wrong Tree: New Acquisition Bias Corrections for Inferring SNP Phylogenies , 2015, Systematic biology.

[17]  Lori Rowe,et al.  Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum , 2015, BMC Genomics.

[18]  B. Murrell,et al.  RDP4: Detection and analysis of recombination patterns in virus genomes , 2015, Virus evolution.

[19]  Jonathan D. G. Jones,et al.  Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite , 2015, eLife.

[20]  Rebecca C. Langer-Curry,et al.  Cryptosporidium muris: infectivity and illness in healthy adult volunteers. , 2015, The American journal of tropical medicine and hygiene.

[21]  Remco R. Bouckaert,et al.  DensiTree 2: Seeing Trees Through the Forest , 2014, bioRxiv.

[22]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[23]  R. Gasser,et al.  Cryptosporidium cuniculus - new records in human and kangaroo in Australia , 2014, Parasites & Vectors.

[24]  R. Gilman,et al.  Population genetics of Cryptosporidium meleagridis in humans and birds: evidence for cross-species transmission. , 2014, International journal for parasitology.

[25]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[26]  J. Nguyen-Van-Tam,et al.  The first recorded outbreak of cryptosporidiosis due to Cryptosporidium cuniculus (formerly rabbit genotype), following a water quality incident. , 2014, Journal of water and health.

[27]  R. Fayer,et al.  Subtyping Cryptosporidium ubiquitum,a Zoonotic Pathogen Emerging in Humans , 2014, Emerging infectious diseases.

[28]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[29]  M. Guo,et al.  Genetic Recombination and Cryptosporidium hominis Virulent Subtype IbA10G2 , 2013, Emerging infectious diseases.

[30]  Inacio Mandomando,et al.  Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study , 2013, The Lancet.

[31]  D. Schwartz,et al.  Comparative Genomics of Cryptosporidium , 2013, International journal of genomics.

[32]  P. Hunter,et al.  Cryptosporidium Pathogenicity and Virulence , 2013, Clinical Microbiology Reviews.

[33]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[34]  G. Widmer,et al.  Genomics and population biology of Cryptosporidium species , 2012, Parasite immunology.

[35]  Heng Li,et al.  A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data , 2011, Bioinform..

[36]  Rebecca C. Langer-Curry,et al.  Cryptosporidium meleagridis: infectivity in healthy adult volunteers. , 2011, The American journal of tropical medicine and hygiene.

[37]  Xian-Ming Chen,et al.  The cell biology of cryptosporidium infection. , 2011, Microbes and infection.

[38]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[39]  Jun Yu,et al.  KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies , 2010, Genom. Proteom. Bioinform..

[40]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[41]  R. Fayer,et al.  A longitudinal study of cryptosporidiosis in dairy cattle from birth to 2 years of age. , 2008, Veterinary parasitology.

[42]  C. Jackson,et al.  Geographic Linkage and Variation in Cryptosporidium hominis , 2008, Emerging infectious diseases.

[43]  H. Dupont,et al.  Epidemiology of cryptosporidiosis in North American travelers to Mexico. , 2007, The American journal of tropical medicine and hygiene.

[44]  Peer Bork,et al.  PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..

[45]  Gregory A. Buck,et al.  The genome of Cryptosporidium hominis , 2004, Nature.

[46]  Lihua Xiao,et al.  Cryptosporidiosis: an update in molecular epidemiology , 2004, Current opinion in infectious diseases.

[47]  A. Joachim,et al.  Human cryptosporidiosis: an update with special emphasis on the situation in Europe. , 2004, Journal of veterinary medicine. B, Infectious diseases and veterinary public health.

[48]  Ping Xu,et al.  Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum , 2004, Science.

[49]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[50]  S. Tzipori,et al.  Infectivity of a Cryptosporidium parvum isolate of cervine origin for healthy adults and interferon-gamma knockout mice. , 2002, The Journal of infectious diseases.

[51]  R. Guerrant,et al.  Cryptosporidiosis: an update. , 2001, The Lancet. Infectious diseases.

[52]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[53]  Todd G. Smith,et al.  Sex allocation and population structure in apicomplexan (protozoa) parasites , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[54]  T. Jelínek,et al.  Prevalence of infection with Cryptosporidium parvumand Cyclospora cayetanensis among international travellers , 1997, Gut.

[55]  C. Day Live animal exports , 1995, Veterinary Record.

[56]  R. Ridley,et al.  Rapid Diagnosis of Bovine Cryptosporidiosis with a Modified Commercial Acid-Fast Staining Procedure , 1991, Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc.

[57]  T. Haynes,et al.  Complete development of Cryptosporidium in cell culture. , 1984, Science.

[58]  Julio A. Rozas Liras,et al.  DnaSP v 5 : a software for comprehensive analysis of DNA polymorphism data , 2009 .

[59]  Paul Horton,et al.  Nucleic Acids Research Advance Access published May 21, 2007 WoLF PSORT: protein localization predictor , 2007 .

[60]  Gregory A. Buck,et al.  CryptoDB: the Cryptosporidium genome resource , 2004, Nucleic Acids Res..

[61]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[62]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology , 2003, Nucleic Acids Res..

[63]  H. Bandelt,et al.  Median-joining networks for inferring intraspecific phylogenies. , 1999, Molecular biology and evolution.

[64]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[65]  A. Saito,et al.  Isolation of coccidian enteroepithelial stages of Toxoplasma gondii from the intestinal mucosa of cats by Percoll density-gradient centrifugation , 1997, Parasitology Research.