Interpolation of geophysical data using continuous global surfaces

A wide class of interpolation methods, including thin‐plate and tension splines, kriging, sinc functions, equivalent‐source, and radial basis functions, can be encompassed in a common mathematical framework involving continuous global surfaces (CGSs). The difficulty in applying these techniques to geophysical data sets has been the computational and memory requirements involved in solving the large, dense matrix equations that arise. We outline a three‐step process for reducing the computational requirements: (1) replace the direct inversion techniques with iterative methods such as conjugate gradients; (2) use preconditioning to cluster the eigenvalues of the interpolation matrix and hence speed convergence; and (3) compute the matrix–vector product required at each iteration with a fast multipole or fast moment method.We apply the new methodology to a regional gravity compilation with a highly heterogeneous sampling density. The industry standard minimum‐curvature algorithms and several scale‐dependent ...

[1]  Richard K. Beatson,et al.  Fast Solution of the Radial Basis Function Interpolation Equations: Domain Decomposition Methods , 2000, SIAM J. Sci. Comput..

[2]  R. Beatson,et al.  Smooth fitting of geophysical data using continuous global surfaces , 2002 .

[3]  O. Dubrule Comparing splines and kriging , 1984 .

[4]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[5]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[6]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[7]  G. N. Newsam,et al.  Fourier filtering of continuous global surfaces , 2002, 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628).

[8]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[9]  Ian Briggs Machine contouring using minimum curvature , 1974 .

[10]  R. Beatson,et al.  Fast Evaluation of Radial Basis Functions: A Multivariate Momentary Evaluation Scheme , 2000 .

[11]  Walter H. F. Smith,et al.  Gridding with continuous curvature splines in tension , 1990 .

[12]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[13]  Ward Cheney,et al.  A course in approximation theory , 1999 .

[14]  G. Wahba Spline models for observational data , 1990 .

[15]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[16]  G. Matheron Principles of geostatistics , 1963 .

[17]  R. Beatson,et al.  Fast evaluation of radial basis functions: I , 1992 .

[18]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[19]  M. Hutchinson,et al.  Splines — more than just a smooth interpolator , 1994 .

[20]  Donald E. Myers,et al.  INTERPOLATION WITH POSITIVE DEFINITE FUNCTIONS , 1988 .

[21]  H. Mitásová,et al.  Interpolation by regularized spline with tension: I. Theory and implementation , 1993 .

[22]  S. Rippa,et al.  Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions , 1986 .

[23]  Richard K. Beatson,et al.  Fast Evaluation of Radial Basis Functions: Moment-Based Methods , 1998, SIAM J. Sci. Comput..

[24]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[25]  Interpolation by Regularized Spline with Tension � , 2022 .

[26]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[27]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[28]  Glenn Stone,et al.  Computation of Thin-Plate Splines , 1991, SIAM J. Sci. Comput..

[29]  Lindrith Cordell,et al.  A scattered equivalent-source method for interpolation and gridding of potential-field data in three dimensions , 1992 .