Generalized bracket formulation of constrained dynamics in phase space.

A generalized bracket formalism is used to define the phase space flow of constrained systems. The generalized bracket naturally subsumes the approach to constrained dynamics given by Dirac some time ago. The dynamical invariant measure and the linear response of systems subjected to holonomic constraints are explicitly derived. In light of previous results, it is shown that generalized brackets provide a simple and unified view of the statistical mechanics of non-Hamiltonian phase space flows with a conserved energy.

[1]  Paul,et al.  Stochastic phase space dynamics with constraints for molecular systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Giovanni Ciccotti,et al.  Effective binding force calculation in a dimeric protein by molecular dynamics simulation , 2002 .

[3]  G. Ciccotti,et al.  Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems , 2001 .

[4]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[5]  R. Ruth,et al.  Fourth-order symplectic integration , 1990 .

[6]  Fei Zhang Operator-splitting integrators for constant-temperature molecular dynamics , 1997 .

[7]  M. Tuckerman,et al.  On the classical statistical mechanics of non-Hamiltonian systems , 1999 .

[8]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[9]  Giovanni Ciccotti,et al.  Statistical mechanics of quantum-classical systems , 2001 .

[10]  G. Ciccotti,et al.  Constrained reaction coordinate dynamics for the simulation of rare events , 1989 .

[11]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[12]  Henrik Gordon Petersen,et al.  Hamilton's equations for constrained dynamical systems , 1990 .

[13]  James L. Anderson,et al.  Constraints in Covariant Field Theories , 1951 .

[14]  M. Suzuki,et al.  Decomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physics , 1985 .

[15]  A. Bishop A note on linear response theory in a microcanonical ensemble , 1971 .

[16]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[17]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[18]  Melchionna Constrained systems and statistical distribution , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Mark E. Tuckerman,et al.  Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics , 2003 .

[20]  C. Lumsden,et al.  On the statistical mechanics of constrained biophysical systems , 1979 .

[21]  Thermodynamic Irreversibility from High-Dimensional Hamiltonian Chaos , 1999, cond-mat/9911181.

[22]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[23]  A. Sergi Non-Hamiltonian equilibrium statistical mechanics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Shuichi Nosé,et al.  Constant Temperature Molecular Dynamics Methods , 1991 .

[25]  J. D. Ramshaw Remarks on non-Hamiltonian statistical mechanics , 2002 .

[26]  C. Lumsden,et al.  A generalized canonical approach to the statistical mechanics of constrained systems , 1978 .

[27]  M. Ferrario,et al.  Reversible integrators for basic extended system molecular dynamics , 1999 .

[28]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[29]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[30]  M. Klein,et al.  TOWARD A STATISTICAL THERMODYNAMICS OF STEADY STATES , 1997 .

[31]  H. Posch,et al.  Comment on ``Toward a Statistical Thermodynamics of Steady States'' , 1998 .

[32]  Michele Parrinello,et al.  Integrating the Car–Parrinello equations. I. Basic integration techniques , 1994 .

[33]  W. Hoover Liouville's theorems, Gibbs' entropy, and multifractal distributions for nonequilibrium steady states , 1998 .

[34]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[35]  G. Ciccotti,et al.  Mixed quantum-classical dynamics , 1999 .

[36]  M. Ferrario,et al.  Non-Hamiltonian equations of motion with a conserved energy. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Michiel Sprik,et al.  Free energy from constrained molecular dynamics , 1998 .